Bacteriophages and Their Potential in Treating Infections and Enhancing Food Safety

Authors

DOI:

https://doi.org/10.15611/nit.2024.40.11

Keywords:

bacteriophages, phage therapy, antibiotic resistance, food safety

Abstract

Aim: Bacteriophages, viruses that specifically infect bacteria, present a promising alternative in addressing the increasing problem of bacterial resistance to antibiotics. This study aims to review the current knowledge of bacteriophages, focusing on their structure, life cycles, and potential applications in medicine and the food industry.

Methodology: A systematic review of scientific literature was conducted to analyze the mechanisms of bacteriophage action, criteria for their selection in therapeutic applications, and existing challenges in their implementation. The study also examines the availability of phage libraries and the difficulties in establishing standardized phage therapy protocols.

Results: Bacteriophages demonstrate high specificity towards target bacteria, enabling precise pathogen elimination. However, the absence of publicly accessible phage libraries and the lack of standardized selection criteria for therapeutic phages remain key obstacles to the broader adoption of phage therapy.

Implications and recommendations: Future research should focus on optimizing bacteriophage isolation, characterization, and efficacy assessment in clinical settings. Additionally, expanding phage databases and establishing regulatory frameworks would enhance accessibility and standardization, facilitating the wider application of phage therapy.

Originality/value: This study underscores the potential of bacteriophages in modern medicine and biotechnology, identifying critical areas for further research that could support the successful implementation of phage therapy as a viable alternative to antibiotics.

Downloads

Download data is not yet available.

References

Ackermann, H.-W. (2003). Bacteriophage Observations and Evolution. Research in Microbiology, 154(4), 245-251. https://doi.org/10.1016/S0923-2508(03)00067-6

Aksyuk, A. A. i Rossmann, M. G. (2011). Bacteriophage Assembly. Viruses, 3(3), 172-203. https://doi.org/10.3390/v3030172

Alves, D., Cerqueira, M. A., Pastrana, L. M. i Sillankorva, S. (2020). Entrapment of a Phage Cocktail and Cinnamaldehyde on Sodium Alginate Emulsion-Based Films to Fight Food Contamination by Escherichia coli and Salmonella Enteritidis. Food Research International, 128. https://doi.org/10.1016/j.foodres.2019.108791

Brzozowska, E., Bazan, J. i Gamian, A. (2011). Funkcje białek bakteriofagowych. Postępy Higieny i Medycyny Doświadczalnej, 65, 167-176. https://doi.org/10.5604/17322693.936090

Chan, B. K., Turner, P. E., Kim, S., Mojibian, H. R., Elefteriades, J. A. i Narayan, D. (2018). Phage Treatment of an Aortic Graft Infected with Pseudomonas aeruginosa. Evolution, Medicine and Public Health, 1, 60-66. https://doi.org/10.1093/emph/eoy005

Fleming, A. (1941). Penicillin. British Medical Journal, 2(4210), 386. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2162878/

Ganeshan, S. D. i Hosseinidoust, Z. (2019). Phage Therapy with a Focus on the Human Microbiota. Antibiotics, 8(3), 31. https://doi.org/10.3390/antibiotics8030131

Garvey, M. (2022). Bacteriophages and Food Production: Biocontrol and Bio-Preservation Options for Food Safety. Antibiotic, 11(10), 1324. https://doi.org/10.3390/antibiotics11101324

Gibb, B., Hyman, P. i Schneider, C. L. (2021). The Many Applications of Engineered Bacteriophages – an Overview. Pharmaceuticals, 14(7), 634. https://doi.org/10.3390/ph14070634

Gouvêa, D. M., Mendonça, R. C. S., Soto, M. L. i Cruz, R. S. (2015). Acetate Cellulose Film with Bacteriophages for Potential Antimicrobial Use in Food Packaging. LWT, 63(1), 85-91. https://doi.org/10.1016/j.lwt.2015.03.014

Karthik, K., Muneeswaran, N., Appavoo, E. i Semmannan, K. (2014). Bacteriophages: Effective Alternative to Antibiotics. Advances in Animal and Veterinary Sciences, 2, 1-7. https://doi.org/10.14737/journal.aavs/2014/2.3s.1.7

Kathayat, D., Lokesh, D., Ranjit, S. i Rajashekara, G. (2021). Avian Pathogenic Escherichia coli (APEC): An Overview of Virulence and Pathogenesis Factors, Zoonotic Potential, and Control Strategies. Pathogens (Basel, Switzerland), 10(4), 467. https://doi.org/10.3390/pathogens10040467

Keen, E. i Dantas, G. (2018). Close Encounters of Three Kinds: Bacteriophages, Commensal Bacteria, and Host Immunity. Trends in Microbiology, 26. https://doi.org/10.1016/j.tim.2018.05.009

Kortright, K. E., Chan, B. K., Koff, J. L. i Turner, P. E. (2019). Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria. Cell Host Microbe, 25(2), 219-232. https://doi.org/10.1016/j.chom.2019.01.014

Kutateladze, M. i Adamia, R. (2008). Phage Therapy Experience at the Eliava Institute. Médecine et Maladies Infectieuses, 38(8), 426-430. https://doi.org/10.1016/j.medmal.2008.06.023

Lewis, R., Bolocan, A. S., Draper, L. A., Paul Ross, R. i Hill, C. (2019). The Effect of a Commercially Available Bacteriophage and Bacteriocin on Listeria monocytogenes in Coleslaw. Viruses, 11(11). https://doi.org/10.3390/v11110977

Lin, D. M., Koskella, B. i Lin, H. C. (2017). Phage Therapy: An Alternative to Antibiotics in the Age of Multi-Drug Resistance. World Journal of Gastrointestinal Pharmacology and Therapeutics, 8(3), 162-173. https://doi.org/10.4292/wjgpt.v8.i3.162

Liu, N., Lewis, C., Zheng, W. i Fu, Z. Q. (2020). Phage Cocktail Therapy: Multiple Ways to Suppress Pathogenicity. Trends in Plant Science, 25(4), 315-317. https://doi.org/10.1016/j.tplants.2020.01.013

Ma, Y. X., Wang, C. Y., Li, Y. Y., Li, J., Wan, Q. Q., Chen, J. H., Tay, F. R. i Niu, L. N. (2020). Considerations and Caveats in Combating ESKAPE Pathogens Against Nosocomial Infections. Advanced Science, 7(1). https://doi.org/10.1002/advs.201901872

Malik, D. J., Sokolov, I. J., Vinner, G. K., Mancuso, F., Cinquerrui, S., Vladisavljevic, G. T., Clokie, M. R. J., Garton, N. J., Stapley, A. G. F. i Kirpichnikova, A. (2017). Formulation, Stabilisation and Encapsulation of Bacteriophage for Phage Therapy. Advances in Colloid and Interface Science, 249, 100-133. https://doi.org/10.1016/j.cis.2017.05.014

Mansour, N. (2017). Bacteriophages Are Natural Gift, Could we Pay Further Attention. Journal of Food Microbiology, 1, 22. Międzybrodzki, R., Borysowski, J., Weber-Dąbrowska, B., Fortuna, W., Letkiewicz, S., Szufnarowski, K., Pawełczyk, Z., Rogóż, P.,

Kłak, M., Wojtasik, E. i Górski, A. (2012). Chapter 3. Clinical Aspects of Phage Therapy. W: M. Łobocka i W. Szybalski (red.), Advances in Virus Research (t. 83, s. 73-121). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-394438-2.00003-7

Narayanan, K. B., Bhaskar, R. i Han, S. S. (2024). Bacteriophages: Natural Antimicrobial Bioadditives for Food Preservation in Active Packaging. International Journal of Biological Macromolecules, 276. https://doi.org/10.1016/j.ijbiomac.2024.133945

Rahmani, R., Zarrini, G., Sheikhzadeh, F. i Aghamohammadzadeh, N. (2015). Effective Phages as Green Antimicrobial Agents Against Antibiotic-Resistant Hospital Escherichia coli. Jundishapur Journal of Microbiology, 8(2). https://doi.org/10.5812/jjm.17744

Ricci, A., Allende, A., Bolton, D., Chemaly, M., Davies, R., Girones, R., Herman, L., Koutsoumanis, K., Lindqvist, R., Nørrung, B., Robertson, L., Ru, G., Sanaa, M., Simmons, M., Skandamis, P., Snary, E., Speybroeck, N., Kuile, B. Ter, Threlfall, J. i Fernández Escámez, P. S. (2017). Scientific Opinion on the Update of the List of QPS-Recommended Biological Agents Intentionally Added to Food or Feed as Notified to EFSA. EFSA Journal, 15(3). https://doi.org/10.2903/J.EFSA.2017.4664

Schooley, R. T., Biswas, B., Gill, J. J., Hernandez-Morales, A., Lancaster, J., Lessor, L., Barr, J. J., Reed, S. L., Rohwer, F., Benler, S., Segall, A. M., Taplitz, R., Smith, D. M., Kerr, K., Kumaraswamy, M., Nizet, V., Lin, L., McCauley, M. D., Strathdee, S. A. i Hamilton, T. (2017). Development and Use of Personalized Bacteriophage-Based Therapeutic Cocktails to Treat a Patient with a Disseminated Resistant Acinetobacter baumannii Infection. Antimicrobial Agents and Chemotherapy, 61(10). https://doi.org/10.1128/AAC.00954-17

Stratakos, A. C. i Grant, I. R. (2018). Evaluation of the Efficacy of Multiple Physical, Biological and Natural Antimicrobial Interventions for Control of Pathogenic Escherichia coli on Beef. Food Microbiology, 76, 209-218. https://doi.org/10.1016/j.fm.2018.05.011

Summers, W. C. (2012). The Strange History of Phage Therapy. Bacteriophage, 2(2), 130-133. https://doi.org/10.4161/bact.20757

Twort, F. W. (1936). Further Investigations on the Nature of Ultra-Microscopic Viruses and Their Cultivation. Journal of Hygiene, 36(2), 204-235. https://doi.org/10.1017/S0022172400043606

Verbeken, G., Huys, I., Pirnay, J. P., Jennes, S., Chanishvili, N., Scheres, J., Górski, A., De Vos, D. i Ceulemans, C. (2014). Taking Bacteriophage Therapy Seriously: A Moral Argument. BioMed Research International. https://doi.org/10.1155/2014/621316

Weber-Dabrowska, B., Mulczyk, M. i Górski, A. (2000). Bacteriophage Therapy of Bacterial Infections: An Update of Our Institute’s Experience. Archivum Immunologiae et Therapiae Experimentalis, 48(6), 547-551.

Weinbauer, M. G. (2004). Ecology of Prokaryotic Viruses. FEMS Microbiology Reviews, 28(2), 127-181. https://doi.org/10.1016/j.femsre.2003.08.001

Zheng, C., Wang, G., Liu, J., Song, C., Gao, H. i Liu, X. (2013). Characterization of the Major Capsid Genes (g23) of T4-Type Bacteriophages in the Wetlands of Northeast China. Microbial Ecology, 65(3), 616-625. https://doi.org/10.1007/s00248-012-0158-z

Downloads

Published

2025-06-26