Variability in Times of Disease. Application of ARMA-GARCH in Modelling and Predicting Volatility of S&P500 Index Return Rates in COVID-19
DOI:
https://doi.org/10.15611/eada.2025.4.02Keywords:
the COVID-19 pandemic, ARMA-GARCH, time series, S&P500 index, stationarityAbstract
Aim: The article considers the time series case of the closing prices of the S&P500 index over the period from January 2020 to April 2021. The author selected the best ARMA(p,q)-GARCH(1,1) models with different forms of probability density functions. The errors of the forecasts generated both in terms of logarithmic returns and their variability were compared.
Methodology: The study followed the Box-Jenkins procedure. Applying the information criterion the study considered the best among these models with normal, skewed Student’s t, generalised error and generalised hyperbolic distribution.
Results: The author obtained the following representations: ARMA(2,0)-GARCH(1,1) and ARMA(0,2)-GARCH(1,1), with normal, skewed Student’s t and generalised error distribution. The assessment of forecast accuracy showed that in the case of conditional variance forecasts, the ARMA(2,0)GARCH(1,1) models with a normal distribution and a generalised error distribution were the best. The largest errors of conditional variance forecasts were generated by models with a skewed Student’s t-distribution.
Implications and recommendations: It is worth extended the study to models based on the range of fluctuations (such as Range GARCH-RGARCH or Conditional Autoregressive Range Model-CARR).
Originality/value: The author considered models with various probability density functions, showing that such diversity was important when looking for the best models in times of high volatility.
Downloads
References
Alles, L., & Kling, J. (1994). Regularities in the Variation of Skewness in Asset Returns. Journal of Financial Research, 17, 427-438.
Baker, S. R., Bloom, N., Davis, S. J., Kost, K., Sammon, M., & Viratyosin, T. (2020). The Unprecedented Stock Market Reaction to COVID-19. The Review of Asset Pricing Studies, 10(4), 742-758.
Bollerslev, T., Engle, R. F., & Nelson, D. (1994). ARCH Models. Handbook of Econometrics, 4, 2963-2967.
Chaudhary, R., Bakhshi, P., & Gupta, H. (2020). Volatility in International Stock Markets: An Empirical Study during COVID-19. Journal of Risk and Financial Management, 13(9), 208. https://doi.org/10.3390/jrfm13090208
Czech, K., Wielechowski, M., Kotyza, P., Benešová, I., & Laputková A. (2020). Shaking Stability: COVID-19 Impact on the Visegrad Group Countries’ Financial Markets. Sustainability, 12(15), 6282. https://doi.org/10.3390/su12156282
Dickey, D. A., & Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series With a Unit Root. Journal of the American Statistical Association, 74(366), 427-431.
Doman, M., & Doman, R. (2009). Modelowanie zmienności i ryzyka: metody ekonometrii finansowej. Wolters Kluwer.
Duttilo, P., Gattone, S. A., & Di Battista, T. (2021). Volatility Modeling: An Overview of Equity Markets in the Euro Area during COVID-19 Pandemic. Mathematics, 9(11), 1212. https://doi.org/10.3390/math9111212
Fama, E. (1965). The Behaviour of Stock Market Prices. Journal of Business, 38, 34-105.
Fisher, T. J., & Gallagher, C. M. (2012). New Weighted Portmanteau Statistics for Time Series Goodness of Fit Testing. Journal of the American Statistical Association, 107(498), 777-787. https://doi.org/10.1080/01621459.2012.688465
Fiszeder, P. (2009). Modele klasy GARCH w empirycznych badaniach finansowych. Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika.
Gherghina, Ș. C., Armeanu, D. Ș., & Joldeș, C. C. (2021). COVID-19 Pandemic and Romanian Stock Market Volatility: A GARCH Approach. Journal of Risk and Financial Management, 14(8), 341. https://doi.org/10.3390/jrfm14080341
Hansen, P. R., & Lunde, A. (2005). A forecast comparison of volatility models: Does anything beat a GARCH (1,1)? Journal of applied econometrics, 20(7), 873-889. https://doi.org/10.1002/jae.800
Hassani, H., & Yeganegi, M. R. (2020). Selecting optimal lag order in Ljung–Box test. Physica A: Statistical Mechanics and its Applications, 541, 123700. https://doi.org/10.1016/j.physa.2019.123700
Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and practice. OTexts.
Johnson, R. A., & Wichern, D. W. (2002). Applied multivariate statistical analysis. Prentice Hall.
Kon, S. (1984). Models of Stock Returns ─ A Comparison. Journal of Finance, 39, 147-165.
Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of Econometrics, 54(1), 159-178. https://doi.org/10.1016/0304-4076(92)90104-Y
Liu, Z., Huynh, T. L. D., & Dai, P.-F. (2021). The impact of COVID-19 on the stock market crash risk in China. Research in International Business and Finance, 57, 101419. https://doi.org/10.1016/j.ribaf.2021.101419
Ljung, G. M. (1986). Diagnostic Testing of Univariate Time Series Models. Biometrika, 73(3), 725-730. https://doi.org/10.2307/2336539
Mandelbrot, B. (1963). The variation of certain speculative prices. Journal of Business, 36, 394-419.
McLeod, A. I., & Li, W. K. (1983). Diagnostic checking ARMA time series models using squared-residual autocorrelations. Journal of time series analysis, 4(4), 269-273. https://doi.org/10.1111/j.1467-9892.1983.tb00373.x
Patton, A. J. (2011). Volatility forecast comparison using imperfect volatility proxies. Journal of Econometrics, 160(1), 246-256. https://doi.org/10.1016/j.jeconom.2010.03.034
Piontek, K. (2002). Modelowanie i prognozowanie zmienności instrumentów finansowych. Akademia Ekonomiczna we Wrocławiu (PhD thesis).
Schwert, G. W. (2002). Tests for Unit Roots: A Monte Carlo Investigation. Journal of Business & Economic Statistics, 20(1), 5-17. http://www.jstor.org/stable/1392146
Shumway, R. H., & Stoffer, S. D. (2017). Time Series Analysis and Its Applications: With R Examples. Springer International Publishing, Cham, Springer Texts in Statistics. http://link.springer.com/10.1007/978-3-319-52452-8
Skoczylas, T. (2013). Modelowanie i prognozowanie zmienności przy użyciu modeli opartych o zakres wahań. Ekonomia. Rynek, Gospodarka, Społeczeństwo, 35, 65-81.
Tsay, R. S. (2005). Analysis of financial time series. John Wiley & Sons.
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 Damian Wiśniewski

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Accepted 2025-10-18
Published 2025-12-17






