Variability in Times of Disease. Application of ARMA-GARCH in Modelling and Predicting Volatility of S&P500 Index Return Rates in COVID-19

Authors

DOI:

https://doi.org/10.15611/eada.2025.4.02

Keywords:

the COVID-19 pandemic, ARMA-GARCH, time series, S&P500 index, stationarity

Abstract

Aim: The article considers the time series case of the closing prices of the S&P500 index over the period from January 2020 to April 2021. The author selected the best ARMA(p,q)-GARCH(1,1) models with different forms of probability density functions. The errors of the forecasts generated both in terms of logarithmic returns and their variability were compared.

Methodology: The study followed the Box-Jenkins procedure. Applying the information criterion the study considered the best among these models with normal, skewed Student’s t, generalised error and generalised hyperbolic distribution.

Results: The author obtained the following representations: ARMA(2,0)-GARCH(1,1) and ARMA(0,2)-GARCH(1,1), with normal, skewed Student’s t and generalised error distribution. The assessment of forecast accuracy showed that in the case of conditional variance forecasts, the ARMA(2,0)GARCH(1,1) models with a normal distribution and a generalised error distribution were the best. The largest errors of conditional variance forecasts were generated by models with a skewed Student’s t-distribution.

Implications and recommendations: It is worth extended the study to models based on the range of fluctuations (such as Range GARCH-RGARCH or Conditional Autoregressive Range Model-CARR).

Originality/value: The author considered models with various probability density functions, showing that such diversity was important when looking for the best models in times of high volatility.

Downloads

Download data is not yet available.

References

Alles, L., & Kling, J. (1994). Regularities in the Variation of Skewness in Asset Returns. Journal of Financial Research, 17, 427-438.

Baker, S. R., Bloom, N., Davis, S. J., Kost, K., Sammon, M., & Viratyosin, T. (2020). The Unprecedented Stock Market Reaction to COVID-19. The Review of Asset Pricing Studies, 10(4), 742-758.

Bollerslev, T., Engle, R. F., & Nelson, D. (1994). ARCH Models. Handbook of Econometrics, 4, 2963-2967.

Chaudhary, R., Bakhshi, P., & Gupta, H. (2020). Volatility in International Stock Markets: An Empirical Study during COVID-19. Journal of Risk and Financial Management, 13(9), 208. https://doi.org/10.3390/jrfm13090208

Czech, K., Wielechowski, M., Kotyza, P., Benešová, I., & Laputková A. (2020). Shaking Stability: COVID-19 Impact on the Visegrad Group Countries’ Financial Markets. Sustainability, 12(15), 6282. https://doi.org/10.3390/su12156282

Dickey, D. A., & Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series With a Unit Root. Journal of the American Statistical Association, 74(366), 427-431.

Doman, M., & Doman, R. (2009). Modelowanie zmienności i ryzyka: metody ekonometrii finansowej. Wolters Kluwer.

Duttilo, P., Gattone, S. A., & Di Battista, T. (2021). Volatility Modeling: An Overview of Equity Markets in the Euro Area during COVID-19 Pandemic. Mathematics, 9(11), 1212. https://doi.org/10.3390/math9111212

Fama, E. (1965). The Behaviour of Stock Market Prices. Journal of Business, 38, 34-105.

Fisher, T. J., & Gallagher, C. M. (2012). New Weighted Portmanteau Statistics for Time Series Goodness of Fit Testing. Journal of the American Statistical Association, 107(498), 777-787. https://doi.org/10.1080/01621459.2012.688465

Fiszeder, P. (2009). Modele klasy GARCH w empirycznych badaniach finansowych. Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika.

Gherghina, Ș. C., Armeanu, D. Ș., & Joldeș, C. C. (2021). COVID-19 Pandemic and Romanian Stock Market Volatility: A GARCH Approach. Journal of Risk and Financial Management, 14(8), 341. https://doi.org/10.3390/jrfm14080341

Hansen, P. R., & Lunde, A. (2005). A forecast comparison of volatility models: Does anything beat a GARCH (1,1)? Journal of applied econometrics, 20(7), 873-889. https://doi.org/10.1002/jae.800

Hassani, H., & Yeganegi, M. R. (2020). Selecting optimal lag order in Ljung–Box test. Physica A: Statistical Mechanics and its Applications, 541, 123700. https://doi.org/10.1016/j.physa.2019.123700

Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and practice. OTexts.

Johnson, R. A., & Wichern, D. W. (2002). Applied multivariate statistical analysis. Prentice Hall.

Kon, S. (1984). Models of Stock Returns ─ A Comparison. Journal of Finance, 39, 147-165.

Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of Econometrics, 54(1), 159-178. https://doi.org/10.1016/0304-4076(92)90104-Y

Liu, Z., Huynh, T. L. D., & Dai, P.-F. (2021). The impact of COVID-19 on the stock market crash risk in China. Research in International Business and Finance, 57, 101419. https://doi.org/10.1016/j.ribaf.2021.101419

Ljung, G. M. (1986). Diagnostic Testing of Univariate Time Series Models. Biometrika, 73(3), 725-730. https://doi.org/10.2307/2336539

Mandelbrot, B. (1963). The variation of certain speculative prices. Journal of Business, 36, 394-419.

McLeod, A. I., & Li, W. K. (1983). Diagnostic checking ARMA time series models using squared-residual autocorrelations. Journal of time series analysis, 4(4), 269-273. https://doi.org/10.1111/j.1467-9892.1983.tb00373.x

Patton, A. J. (2011). Volatility forecast comparison using imperfect volatility proxies. Journal of Econometrics, 160(1), 246-256. https://doi.org/10.1016/j.jeconom.2010.03.034

Piontek, K. (2002). Modelowanie i prognozowanie zmienności instrumentów finansowych. Akademia Ekonomiczna we Wrocławiu (PhD thesis).

Schwert, G. W. (2002). Tests for Unit Roots: A Monte Carlo Investigation. Journal of Business & Economic Statistics, 20(1), 5-17. http://www.jstor.org/stable/1392146

Shumway, R. H., & Stoffer, S. D. (2017). Time Series Analysis and Its Applications: With R Examples. Springer International Publishing, Cham, Springer Texts in Statistics. http://link.springer.com/10.1007/978-3-319-52452-8

Skoczylas, T. (2013). Modelowanie i prognozowanie zmienności przy użyciu modeli opartych o zakres wahań. Ekonomia. Rynek, Gospodarka, Społeczeństwo, 35, 65-81.

Tsay, R. S. (2005). Analysis of financial time series. John Wiley & Sons.

Downloads

Published

2025-12-17
Received 2025-02-24
Accepted 2025-10-18
Published 2025-12-17