[Work in progress] Verification of forecast effectiveness for selected volatility estimators

Authors

DOI:

https://doi.org/10.15611/

Keywords:

Volatility, Volatility forecasting, OHLC prices, Volatility estimators

Abstract

Aim: The aim of this study is to determine which volatility forecasting method produces results that are closest to the actual and whether the use of estimators using OHLC prices will affect the accuracy of forecasts.

Methodology: This study examines five models – a historical model, GARCH(1,1) and three GARCH models with selected volatility estimators, including Parkinson, Garman-Klass and Rogers-Satchell. The sample used daily prices, with each instrument having 2001 observations and a 20-day forecast horizon.  Prediction errors were calculated using two symmetric measures, RMSE and MAE.

Findings: The empirical results determined that no specific approach is universally regarded as superior. It is recommended that naive methods or the standard GARCH method be used, as they are simpler than the complex models with selected estimators and save operating time. An important finding is that volatility estimators improve results for stocks, but not for other types of instruments. An analysis of specific instrument types indicates that methods using volatility estimators obtain better results than classical methods when analyzing stock prices. However, when examining other instruments, classical methods prove to be better.

Implications: This work can assist researchers in selecting the appropriate model for specific data and indicate whether the use of a different estimator would enrich the results of forecasts. Further research could investigate the impact of higher frequency data on the performance of volatility estimators.

Originality/value: This study investigates whether the Polish market will respond to different estimators in a manner consistent with the responses observed in other markets around the globe. Another aspect that this work allowed verification of was whether the best model differs according to the type of instrument, and the results confirmed that these differences do exist (for stock prices, the model with the Rogers-Satchell estimator, for currencies the GARCH(1,1), and for commodities the historical method).

Downloads

Download data is not yet available.

References

Bahoo, S., Cucculelli, M., Goga, X., & Mondolo, J. (2024). Artificial intelligence in Finance: a comprehensive review through bibliometric and content analysis. SN Business & Economics, 4(2), 23.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307–327.

Celestin, M., Kumar, D. A., & Asamoah, P. (2025). Applications of GARCH Models for Volatility Forecasting in High-Frequency Trading Environments. Zenodo, 10, 12-21.

Chung, S. (2024). Modelling and Forecasting Energy Market Volatility Using GARCH and Machine Learning Approach. arXiv preprint arXiv:2405.19849.

Doman, M., & Doman, R. (2009). Modelowanie zmienności i ryzyka. Oficyna a Wolters Kluwer business. Kraków.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: Journal of the econometric society, 987-1007.

Fiszeder, P. (2020). Ceny minimalne i maksymalne w modelowaniu i prognozowaniu zmienności oraz zależności na rynkach finansowych. Wydawnictwo Naukowe PWN. Warszawa.

Ge, W., Lalbakhsh, P., Isai, L., Lenskiy, A., & Suominen, H. (2022). Neural network–based financial volatility forecasting: A systematic review. ACM Computing Surveys (CSUR), 55(1), 1-30.

Ghalanos, A. (2022). Introduction to the rugarch package. (Version 1.4-3). www.cran.r-project.org/web/packages/rugarch/vignettes/Introduction_to_the_rugarch_package.pdf (Accessed: 11 March 2023)

Hill, C., & McCullough, B.D. (2019). On The Accuracy of GARCH Estimation in R Packages. Econometric Research in Finance, Vol. 4, 133–156.

Hull, J. C. (1989). Options, futures and other derivative securities. Prentice Hall. Englewood Cliffs, NJ.

Hsu, Y. T., Liu, H. C., & Wang, J. N. (2014). How useful are the various volatility estimators for Improving GARCH-based volatility forecasts? Evidence from the Nasdaq-100 Stock Index. International Journal of Economics and Financial Issues, 4(3), 651-656.

Jajuga, K. (2007). Zarządzanie ryzykiem. Wydawnictwo Naukowe PWN. Warszawa.

Jajuga, K., & Jajuga, T. (2007). Inwestycje. Wydawnictwo Naukowe PWN. Warszawa.

Knight, J., & Satchell, S. (2011). Forecasting volatility in the financial markets. Elsevier. Netherlands.

Korkusuz, B., Kambouroudis, D., & McMillan, D. G. (2023). Do extreme range estimators improve realized volatility forecasts? Evidence from G7 stock markets. Finance Research Letters, 55, 103992.

Ng, K. H., Peiris, S., Chan, J. S. K., Allen, D., & Ng, K. H. (2017). Efficient modelling and forecasting with range based volatility models and its application. The North American Journal of Economics and Finance, 42, 448-460.

Parkinson, M. (1980). The extreme value method for estimating the variance of the rate of return. Journal of business, 61-65.

Piontek, K. (1999). Zmienność historyczna i implikowana jako prognozy zmienności instrumentów finansowych. Prace Naukowe/Akademia Ekonomiczna w Katowicach, 325-336.

Piontek, K. (2002). Modelowanie i prognozowanie zmienności instrumentów finansowych. Rozprawa doktorska. Wydawnictwo Akademii Ekonomicznej im. Oskara Langego we Wrocławiu. Wrocław.

Todorova, N., & Husmann, S. (2012). A comparative study of range‐based stock return volatility estimators for the German market. Journal of Futures Markets, 32(6), 560-586.

Tripathy, N., Mishra, D., Hota, S., Mishra, S., Das, G. C., Dalai, S. S., & Nayak, S. K. (2025). Bitcoin volatility forecasting: a comparative analysis of conventional econometric models with deep learning models. International Journal of Electrical & Computer Engineering (2088-8708), 15(1).

This paper is WIP. Full text download will be available soon.

Published

2025-07-09

Issue

Section

Articles

Categories

Received 2025-05-12
Accepted 2025-05-22
Published 2025-07-09