Visualisation of linear ordering results using multidimensional scaling – problems and an overview of studies

Authors

DOI:

https://doi.org/10.15611/aoe.2025.1.12

Keywords:

aggregate measures, multidimensional scaling, R program, mdsOpt package, hybrid method

Abstract

Aim: The aim of the article was to review the methodological solutions proposed as part of the hybrid method, which combines linear ordering with multidimensional scaling for various types of data. In the first step, after applying multidimensional scaling, it was possible to visualise objects of interest in
a two-dimensional space. In the second step, the objects were linearly ordered according to an aggregate measure based on the Euclidean distance.

Methodology: The general procedure of the hybrid method, which can be used to visualise results of linear ordering for metric, ordinal and interval-valued data, was presented.

Results: The authors highlight the problems associated with the use of multidimensional scaling in linear ordering and how they can be solved. These problems with the application of multidimensional scaling in linear ordering are illustrated by an attempt to rank 27 EU countries in 2021 according to their progress towards reaching the sustainable development goal (SDG7). The article also contains an overview of studies involving the hybrid method.

Implications and recommendations: If the distribution of errors related to the arrangement of individual objects in the scaling space (stress-per-point values – spp) deviates significantly from the uniform distribution, the ranking of objects based on the results of multidimensional scaling is distorted. To solve this, the paper proposes to select the optimal multidimensional scaling procedure considering two criteria: Kruskal’s goodness-of-fit statistic and the Herfindahl-Hirschman index, calculated using spp values. The use of the hybrid method is facilitated by the mdsOpt package in R environment.

Originality/value: The hybrid method makes use of the concept of isoquants and the path of development (the shortest line connecting the pattern and anti-pattern of development) proposed by Hellwig (1981). By applying multidimensional scaling one can visualise the results of linear ordering for more than two variables, whereas other linear ordering methods cannot be used to visualise these results.

Downloads

Download data is not yet available.

References

Antczak, E. (2013). Przestrzenny taksonomiczny miernik rozwoju. Wiadomości Statystyczne. The Polish Statistician, 7, 37-53. https://doi.org/10.59139/ws.2013.07.3

Banihabib, M. E., Hashemi-Madani, F. S., & Forghani, A. (2017). Comparison of Compensatory and non-Compensatory Multi Criteria Decision Making Models in Water Resources Strategic Management. Water Resources Management, 31, 3745-3759. https://doi.org/10.1007/s11269-017-1702-x

Bąk, A. (2018). Zastosowanie metod wielowymiarowej analizy porównawczej do oceny stanu środowiska w województwie dolnośląskim. Wiadomości Statystyczne, 1(680), 7-20. https://doi.org/10.5604/01.3001.0014.0521

Becker, W., Saisana, M., Paruolo, P., & Vandecasteele, I. (2017). Weights and importance in composite indicators: Closing the gap. Ecological Indicators, 80, 12-22. https://doi.org/10.1016/j.ecolind.2017.03.056

Billard, L., & Diday, E. (2006). Symbolic Data Analysis: Conceptual Statistics and Data Mining. John Wiley & Sons. https://doi.org/10.1002/9780470090183

Borg, I., & Groenen, P. J. F. (2005). Modern Multidimensional Scaling. Theory and Applications. Springer Science+Business Media. https://doi.org/10.1007/0-387-28981-X

Borg, I., Groenen, P. J. F., & Mair, P. (2018). Applied Multidimensional Scaling and Unfolding. Springer. https://doi.org/10.1007/978-3-319-73471-2

Borg, I., & Mair, P. (2017). The Choice of Initial Configurations in Multidimensional Scaling: Local Minima, Fit, and Interpretability. Austrian Journal of Statistics, 46(2), 19-32. https://doi.org/10.17713/ajs.v46i2.561

Borys, T. (1984). Kategoria jakości w statystycznej analizie porównawczej. Monografie i opracowania, Prace Naukowe Akademii Ekonomicznej we Wrocławiu, 23.

Borys, T., Strahl, D., & Walesiak, M. (1990). Wkład ośrodka wrocławskiego w rozwój teorii i zastosowań metod taksono-micznych (pp. 12-23). In J. Pociecha (Ed.), Taksonomia – teoria i zastosowania. Wydawnictwo AE w Krakowie.

Chen, C-T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets and Systems, 114, 1-9. https://doi.org/10.1016/S0165-0114(97)00377-1

De Leeuw, J., & Mair, P. (2015). Shepard Diagram, Wiley StatsRef: Statistics Reference Online. https://doi.org/10.1002/9781118445112.stat06268.pub2

Dehnel, G., Gołata, E., Obrębalski, M., & Walesiak, M. (2018). Ocena zmian w procesie starzenia się ludności w regionach krajów Grupy Wyszehradzkiej z zastosowaniem wybranych metod statystycznej analizy wielowymiarowej (pp. 39-52). In K. Jajuga, M. Walesiak (Eds.), Klasyfikacja i analiza danych – teoria i zastosowania, Taksonomia 30, Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, 507. https://doi.org/10.15611/pn.2018.507.04

Dehnel, G., Gołata, E., & Walesiak, M. (2020). Assessment of changes in population aging in regions of the V4 countries with application of multidimensional scaling. Argumenta Oeconomica, 1(44), 77-100. https://doi.org/10.15611/aoe.2020.1.04

Dehnel, G., & Walesiak, M. (2019). A comparative analysis of economic efficiency of medium-sized manufacturing enterprises in districts of Wielkopolska province using the hybrid approach with metric and interval-valued data. Statistics in Transition new series, 20(2), 49-67. https://doi.org/10.21307/stattrans-2019-014

Dehnel, G., Walesiak, M., & Obrębalski, M. (2019). Comparative Analysis of the Ordering of Polish Provinces in Terms of Social Cohesion. Argumenta Oeconomica Cracoviensia, 1(20), 71-85.

El Gibari, S., Gómez, T., & Ruiz, F. (2019). Building composite indicators using multicriteria methods: A review. Journal of Business Economics, 89, 1-24. https://doi.org/10.1007/s11573-018-0902-z

Esposito, F., Malerba, D., & Tamma, V. (2000). Dissimilarity Measures for Symbolic Objects (pp. 165-185). In H. H. Bock,

E. Diday (Eds.), Analysis of Symbolic Data. Exploratory Methods for Extracting Statistical Information from Complex Data. Springer-Verlag. https://doi.org/10.1007/978-3-642-57155-8

Eurostat. (2023). EU SDG Indicator set 2023. Result of the review in preparation of the 2023 edition of the EU SDG monitoring report. Retrieved January 4, 2024, from: https://ec.europa.eu/eurostat/web/sdi/information-data

Everitt, B., Landau, S., Leese, M., & Stahl, D. (2011). Cluster Analysis. John Wiley & Sons. https://doi.org/10.1002/9780470977811

Fu, Y., Xiangtianrui, K., Luo, H., & Yu, L. (2020). Constructing Composite Indicators with Collective Choice and Interval‑Valued TOPSIS: The Case of Value Measure. Social Indicators Research, 152, 1213. https://doi.org/10.1007/s11205-020-02461-1

Greco, S., Ishizaka, A., Tasiou, M., & Torrisi, G. (2019). On the Methodological Framework of Composite Indices: A Review of the Issues of Weighting, Aggregation, and Robustness. Social Indicators Research, 141, 61-94. https://doi.org/10.1007/s11205-017-1832-9

Hellwig, Z. (1968). Zastosowanie metody taksonomicznej do typologicznego podziału krajów ze względu na poziom ich rozwoju i strukturę wykwalifikowanych kadr. Przegląd Statystyczny 15(4), 307-327.

Hellwig, Z. (1972). Procedure of Evaluating High-Level Manpower Data and Typology of Countries by Means of the Taxonomic Method (pp. 115-134). In Z. Gostkowski (Ed.), Towards a system of Human Resources Indicators for Less Developed Countries, Papers Prepared for UNESCO Research Project. Ossolineum, The Polish Academy of Sciences Press.

Hellwig, Z. (1981). Wielowymiarowa analiza porównawcza i jej zastosowanie w badaniach wielocechowych obiektów gospodarczych (pp. 46-68). In W. Welfe (Ed.), Metody i modele ekonomiczno-matematyczne w doskonaleniu zarządzania gospodarką socjalistyczną. PWE.

Herfindahl, O. C. (1950). Concentration in the steel industry, Ph.D. thesis. Columbia University.

Hirschman, A. O. (1964). The paternity of an index. The American Economic Review, 54(5), 761-762. http://www.jstor.org/stable/1818582

Hwang, C. L., & Yoon, K. (1981). Multiple attribute decision making – methods and applications. A state-of-the-art. Springer-Verlag. https://doi.org/10.1007/978-3-642-48318-9

Ichino, M., & Yaguchi, H. (1994). Generalized Minkowski metrics for mixed feature-type data analysis. IEEE Transactions on Systems, Man, and Cybernetics, 24(4), 698-708. https://doi.org/10.1109/21.286391

Jajuga, K., Walesiak, M., & Bąk, A. (2003). On the general distance measure (pp. 104–109). In M. Schwaiger, O. Opitz (Eds.). Exploratory Data Analysis in Empirical Research. Springer-Verlag. https://doi.org/10.1007/978-3-642-55721-7_12

Jefmański, B., & Dudek, A. (2016). Syntetyczna miara rozwoju Hellwiga dla trójkątnych liczb rozmytych (pp. 29-40). In

D. Appenzeller (Ed.). Matematyka i informatyka na usługach ekonomii. Wybrane problemy modelowania i prognozowa-nia zjawisk gospodarczych. Wydawnictwo Uniwersytetu Ekonomicznego w Poznaniu.

Lira, J. (2015). A comparison of the methods of relative taxonomy for the assessment of infrastructural development of counties in Wielkopolskie voivodship. Quantitative Methods in Economics, 16(2), 53-62.

Łysoń, P., Szymkowiak, M., & Wawrowski, Ł. (2016). Badania porównawcze atrakcyjności turystycznej powiatów z uwzględ-nieniem ich otoczenia, Wiadomości Statystyczne. The Polish Statistician, 12(667), 45-57. https://doi.org/10.5604/01.3001.0014.1117

Maggino, F. (Ed). (2017). Complexity in society: from indicators construction to their synthesis. Springer. https://doi.org/10.1007/978-3-319-60595-1

Mair, P., Borg, I. & Rusch, T. (2016). Goodness-of-fit assessment in multidimensional scaling and unfolding. Multivariate Behavioral Research, 51(6), 772-789.

Mair, P., De Leeuw, J., Borg, I., & Groenen, P. J. F. (2022). smacof: Multidimensional Scaling. R package version 2.1-5 edition. https://CRAN.R-project.org/package=smacof

Mazziotta, M., & Pareto, A. (2016). On a generalized non-compensatory composite index for measuring socio-economic phenomena. Social Indicators Research, 127(3), 983-1003. https://doi.org/10.1007/s11205-015-0998-2

Mazziotta, M., & Pareto, A. (2018). Measuring well-being over time: the adjusted Mazziotta-Pareto index versus other non-compensatory indices. Social Indicators Research, 136(3), 967-976. https://doi.org/10.1007/s11205-017-1577-5

Mazziotta, M., & Pareto, A. (2022). Composite indices construction: the performance interval approach. Social Indicators Research, 161, 541-551. https://doi.org/10.1007/s11205-020-02336-5

Młodak, A. (2014). On the construction of an aggregated measure of the development of interval data. Computational Statistics, 29(5), 895-929. https://doi.org/10.1007/s00180-013-0469-7

Munda, G. (2008). Social Multi-Criteria Evaluation for a Sustainable Economy. Springer.

Munda, G., & Nardo, M. (2009). Noncompensatory/nonlinear composite indicators for ranking countries: a defensible setting. Applied Economics, 41(12), 1513-1523. https://doi.org/10.1080/00036840601019364

Nardo, M., Saisana, M., Saltelli, A., Tarantola, S., Hoffman, A., & Giovannini, E. (2005). Handbook on constructing composite indicators. OECD Publishing. https://doi.org/10.1787/533411815016

Obrębalski, M., & Walesiak, M. (2019). Ocena sytuacji młodzieży na rynku pracy w regionach przygranicznych – podejście hybrydowe. Wiadomości Statystyczne. The Polish Statistician, 64(12), 7-26. https://doi.org/10.5604/01.3001.0013.6460

Paruolo, P., Saisana, M., & Saltelli, A. (2013). Ratings and rankings: voodoo or science? Journal of the Royal Statistical Society, A, 176(3), 609-634. https://doi.org/10.1111/j.1467-985X.2012.01059.x

Perkal, J. (1967). Matematyka dla przyrodników i rolników, Część II. PWN.

Pietrzak, M. B. (2014). Taksonomiczny miernik rozwoju (TMR) z uwzględnieniem zależności przestrzennych. Przegląd Statystyczny, 61(2), 181-201. https://doi.org/10.59139/ps.2014.02.6

R Core Team (2023). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/

Roszkowska, E., & Jefmański, B. (2021). Interval-valued intuitionistic fuzzy synthetic measure (I-VIFSM) Based on Hellwig’s approach in the analysis of survey data. Mathematics, 9, 201. https://doi.org/10.3390/math9030201

Saisana, M., Saltelli, A., & Tarantola, S. (2005). Uncertainty and sensitivity analysis techniques as tools for the quality assessment of composite indicators. Journal of the Royal Statistical Society, A, 168(2), 307-323. https://doi.org/10.1111/j.1467-985X.2005.00350.x

Saltelli, A. (2007). Composite indicators between analysis and advocacy. Social Indicators Research, 81, 65-77. https://doi.org/10.1007/s11205-006-0024-9

Sokołowski, A., & Markowska, M. (2017). Iteracyjna metoda liniowego porządkowania obiektów wielocechowych. Przegląd Statystyczny, 64(2), 153-162. https://doi.org/10.5604/01.3001.0014.0788

Sokołowski, A., & Markowska, M. (2019). Elastyczne porządkowanie liniowe obiektów. XXXIII Konferencja Taksonomiczna) nt. „Klasyfikacja i analiza danych – teoria i zastosowania”. Uniwersytet Szczeciński.

Walesiak, M. (1993). Statystyczna analiza wielowymiarowa w badaniach marketingowych. Prace Naukowe Akademii Ekonomicznej we Wrocławiu, No. 654, Monografie i Opracowania, No. 101.

Walesiak, M. (1999). Distance measure for ordinal data. Argumenta Oeconomica, 2(8), 167-173. Retrieved January 4, 2024, from: https://www.dbc.wroc.pl/dlibra/publication/52780/

Walesiak, M. (2014). Wzmacnianie skali pomiaru dla danych porządkowych w statystycznej analizie wielowymiarowej. Taksonomia, 22, Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, 327, 60-68.

Walesiak, M. (2016). Visualization of linear ordering results for metric data with the ap-plication of multidimensional scaling. Ekonometria, 2(52), 9-21. https://doi.org/10.15611/ekt.2016.2.01

Walesiak, M. (2017a). The application of multidimensional scaling to measure and assess changes in the level of social cohesion of the Lower Silesia region in the period 2005-2015. Ekonometria, 3(57), 9-25. https://doi.org/10.15611/ekt.2017.3.01

Walesiak, M. (2017b). Wizualizacja wyników porządkowania liniowego dla danych porządkowych z wykorzystaniem skalowania wielowymiarowego. Przegląd Statystyczny 1(64), 5-19. https://doi.org/10.5604/01.3001.0014.0757

Walesiak, M., & Dehnel, G. (2018). Evaluation of economic efficiency of small manufacturing enterprises in districts of Wielkopolska province using interval-valued symbolic data and the hybrid approach (pp. 563-572). In M. Papież and S. Śmiech (Eds.), The 12th Professor Aleksander Zeliaś International Conference on Modelling and Forecasting of Socio-Economic Phenomena. Conference Proceedings. Foundation of the Cracow University of Economics.

Walesiak, M., & Dehnel, G. (2019a). A comparative analysis of rankings of Polish provinces in terms of social cohesion for metric and interval-valued data (pp. 250-258). In M. Papież and S. Śmiech (Eds.), The 13th Professor Aleksander Zelias International Conference on Modelling and Forecasting of Socio-Economic Phenomena. Conference Proceedings. Wydawnictwo C.H. Beck.

Walesiak, M., & Dehnel, G. (2019b). Assessment of changes in population ageing of Polish provinces in 2002, 2010 and 2017 using the hybrid approach. Econometrics. Ekonometria. Advances in Applied Data Analysis, 23(4), 1-15. https://doi.org/10.15611/eada.2019.4.01

Walesiak, M., & Dehnel, G. (2020). The measurement of social cohesion at province level in Poland using metric and interval-valued data. Sustainability, 12(18), 7664, 1-19. https://doi.org/10.3390/su12187664

Walesiak, M., & Dehnel, G. (2022). A dynamic approach to relative taxonomy in the assessment of changes in the social cohesion of Polish provinces in 2010-2018. Argumenta Oeconomica, 1(48), 37-65. https://doi.org/10.15611/aoe.2022.1.02

Walesiak, M., & Dehnel, G. (2023). A measurement of social cohesion in Poland’s NUTS2 regions in the period 2010-2019 by applying dynamic relative taxonomy to interval-valued data. Sustainability, 15(4), 3752. https://doi.org/10.3390/su15043752

Walesiak, M., Dehnel, G., & Dudek, A. (2022). A dynamic approach to relative taxonomy and robust measures of central tendency. Communications in Statistics – Simulation and Computation, 53(6), 2645-2661. https://doi.org/10.1080/03610918.2022.2083163

Walesiak, M., & Dudek, A. (2017). Selecting the optimal multidimensional scaling procedure for metric data with R environment. Statistics in Transition new series, 18(3), 521-540. https://doi.org/10.59170/stattrans-2017-027

Walesiak, M., & Dudek, A. (2020). Searching for an optimal MDS procedure for metric and interval-valued data using mdsOpt R package (pp. 307-324). In K. S. Soliman (Ed.), Education excellence and innovation management: a 2025 vision to sustain economic development during global challenges. Proceedings of the 35th International Business Information Manage-ment Association Conference (IBIMA).

Walesiak, M., & Dudek, A. (2023a). clusterSim: Searching for optimal clustering procedure for a data set, R package version 0.51-3 edition. https://CRAN.R-project.org/package=clusterSim

Walesiak, M., & Dudek, A. (2023b). mdsOpt: searching for optimal MDS procedure for metric and interval-valued data,

R package version 0.7-6 edition. https://CRAN.R-project.org/package=mdsOpt

Wydymus, S. (2013). Rozwój gospodarczy a poziom wynagrodzeń w krajach Unii Europejskiej – analiza taksonomiczna. Zeszyty Naukowe Uniwersytetu Szczecińskiego, 756, 631-645.

Downloads

Published

2025-04-25

Issue

Section

Articles

Categories

Received 2024-01-24
Accepted 2024-09-16
Published 2025-04-25