Formation and determinants of inter-municipality commuting in Poland: Network centrality analysis
Keywords:
commuting network, transportation network, complex network, PageRank, labor mobility, PolandAbstract
Aim: The article analyses the pattern of regional labour mobility in Poland using inter-municipality commuting data. The research questions concerned directions and factors of labour mobility between cities, to assess the level of the centrality of municipalities and major urban centres within the commuting network in Poland.
Methodology: A simple static directed commuting network with 3,094 nodes and 34,986 edges was constructed. Various commonly used centrality measures were calculated: degree centrality, betweenness centrality, closeness centrality, PageRank, HITS (hyperlink-induced topic search), and clustering coefficient.
Results: The analysis revealed that all voivodeship capitals have the highest centrality in their respective voivodeships, whereas the PageRank of municipalities depends primarily on the number of large firms. The in-degree of the most influential node (Poland’s capital) is much higher than its outdegree. Hidden centres were identified mostly in suburban areas, associated with the location of large enterprises. It was shown that the determinants of the centrality of cities include population, number of firms, and number of large firms.
Implications and recommendations: The analysis of commuting networks has practical applications for regional planning. The network importance of each municipality should be taken into consideration when developing national and regional infrastructure. The study’s approach attempted to holistically capture the commuting network across the country. The research indicates significant interregional differences. Originality/value: The novelty of the research is in the modern network analysis methodology applied to commuting data to quantifiably determine the network centrality of the most important urban areas in Poland.
References
Agryzkov, T., Oliver, J. L., Tortosa, L., & Vicent, J. F. (2012). An algorithm for ranking the nodes of an urban network based on the concept of PageRank vector. Applied Mathematics and Computation, 219(4), 2186-2193. https://doi.org/10.1016/j.amc.2012.08.064
Agryzkov, T., Tortosa, L., & Vicent, J. F. (2016). New highlights and a new centrality measure based on the Adapted PageRank Algorithm for urban networks. Applied Mathematics and Computation, 291, 14-29. https://doi.org/10.1016/j.amc.2016.06.036
Agryzkov, T., Martí, P., Tortosa, L., & Vicent, J. F. (2017). Measuring urban activities using Foursquare data and network analysis: A case study of Murcia (Spain). International Journal of Geographical Information Science, 31(1), 100-121. https://doi.org/10.1080/13658816.2016.1188931
Albert, R., & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), 47-97. https://doi.org/10.1103/RevModPhys.74.47
Bartosiewicz, B., & Marcińczak, S. (2020a). Investigating polycentric urban regions: Different measures – Different results. Cities, 105, 102855. https://doi.org/10.1016/j.cities.2020.102855
Bartosiewicz, B., & Marcińczak, S. (2020b). Polycentricity of urban regions in Poland. Przegląd Geograficzny, 92(4), 455-474. https://doi.org/10.7163/PrzG.2020.4.1
Bartosiewicz, B., & Marcińczak, S. (2022). Urban structure in transition: Evidence from Poland, 1983-2011. Regional Studies, 56(1), 36-47. https://doi.org/10.1080/00343404.2021.1878125
Bartosiewicz, B., & Pielesiak, I. (2019). Spatial patterns of travel behaviour in Poland. Travel Behaviour and Society, 15, 113122. https://doi.org/10.1016/j.tbs.2019.01.004
Beaverstock, J. V., Doel, M. A., Hubbard, P. J., & Taylor, P. J. (2002). Attending to the world: Competition, cooperation and connectivity in the World City network. Global Networks, 2(2), 111-132. https://doi.org/10.1111/1471-0374.00031
Biernat, E., Buchholtz, S., & Bartkiewicz, P. (2018). Motivations and barriers to bicycle commuting: Lessons from Poland. Transportation Research Part F: Traffic Psychology and Behaviour, 55, 492-502. https://doi.org/10.1016/j.trf.2018.03.024
Boeing, G. (2017). OSMnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks. Computers, Environment and Urban Systems, 65, 126-139. https://doi.org/10.1016/j.compenvurbsys.2017.05.004
Boeing, G. (2020). A multi-scale analysis of 27,000 urban street networks: Every US city, town, urbanized area, and Zillow neighborhood. Environment and Planning B: Urban Analytics and City Science, 47(4), 590-608. https://doi.org/10.1177/2399808318784595
Brandes, U. (2001). A faster algorithm for betweenness centrality. The Journal of Mathematical Sociology, 25(2), 163-177. https://doi.org/10.1080/0022250X.2001.9990249
Brandes, U., & Erlebach, T. (Eds.). (2005). Network analysis: Methodological foundations. Springer.
Brandes, U., Robins, G., McCranie, A., & Wasserman, S. (2013). What is network science? Network Science, 1(1), 1-15. https://doi.org/10.1017/nws.2013.2
Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems, 30(1-7), 107-117. https://doi.org/10.1016/S0169-7552(98)00110-X
Brown, E., Derudder, B., Parnreiter, C., Pelupessy, W., Taylor, P. J., & Witlox, F. (2010). World City Networks and Global Commodity Chains: Towards a world-systems’ integration. Global Networks, 10(1), 12-34.
Builes-Jaramillo, A., & Lotero, L. (2022). Spatial-temporal network analysis of the public bicycle sharing system in Medellín, Colombia. Journal of Transport Geography, 105, 103460. https://doi.org/10.1016/j.jtrangeo.2022.103460
Bureau van Dijk. (2023). Orbis. Retrieved December 21, 2022, from https://orbis.bvdinfo.com/
Burger, M., & Meijers, E. (2012). Form follows function? Linking morphological and functional polycentricity. Urban Studies, 49(5), 1127-1149. https://doi.org/10.1177/0042098011407095
Casali, Y., & Heinimann, H. R. (2019). A topological analysis of growth in the Zurich road network. Computers, Environment and Urban Systems, 75, 244-253. https://doi.org/10.1016/j.compenvurbsys.2019.01.010
Caschili, S., & De Montis, A. (2013). Accessibility and complex network analysis of the U.S. commuting system. Cities, 30, 4-17. https://doi.org/10.1016/j.cities.2012.04.007
Chatterjee, K., Chng, S., Clark, B., Davis, A., De Vos, J., Ettema, D., Handy, S., Martin, A. & Reardon, L. (2020). Commuting and wellbeing: A critical overview of the literature with implications for policy and future research. Transport Reviews, 40(1), 5-34. https://doi.org/10.1080/01441647.2019.1649317
Chen, D.-B., Gao, H., Lü, L., & Zhou, T. (2013). Identifying influential nodes in large-scale directed networks: The role of clustering. PLoS ONE, 8(10), e77455. https://doi.org/10.1371/journal.pone.0077455
Crucitti, P., Latora, V., & Porta, S. (2006). Centrality in networks of urban streets. Chaos: An Interdisciplinary Journal of Nonlinear Science, 16(1), 015113. https://doi.org/10.1063/1.2150162
Czernek-Marszałek, K., & Marszałek, P. (2020). Social embeddedness as a trigger of business tourism cooperation. Argumenta Oeconomica, 2019(1), 341-386. https://doi.org/10.15611/aoe.2020.1.14
Delmelle, E. C., Haslauer, E., & Prinz, T. (2013). Social satisfaction, commuting and neighborhoods.
De Montis, A., Barthélemy, M., Chessa, A., & Vespignani, A. (2007). The structure of interurban traffic: A weighted network analysis. Environment and Planning B: Planning and Design, 34(5), 905-924. https://doi.org/10.1068/b32128
Derudder, B., Liu, X., Wang, M., Zhang, W., Wu, K., & Caset, F. (2021). Measuring polycentric urban development: The importance of accurately determining the ‘balance’ between ‘centers.’ Cities, 111, 103009. https://doi.org/10.1016/j.cities.2020.103009
Derudder, B., & Witlox, F. (2008). Mapping world city networks through airline flows: Context, relevance, and problems. Journal of Transport Geography, 16(5), 305-312. https://doi.org/10.1016/j.jtrangeo.2007.12.005
Dessemontet, P., Kaufmann, V., & Jemelin, C. (2010). Switzerland as a single metropolitan area? A study of its commuting network. Urban Studies, 47(13), 2785-2802. https://doi.org/10.1177/0042098010377371
Dewulf, B., Neutens, T., Vanlommel, M., Logghe, S., De Maeyer, P., Witlox, F., … Van de Weghe, N. (2015). Examining commuting patterns using Floating Car Data and circular statistics: Exploring the use of new methods and visualizations to study travel times. Journal of Transport Geography, 48, 41-51. https://doi.org/10.1016/j.jtrangeo.2015.08.006
Drejerska, N. (2016). Are Polish rural areas destinations for commuting? Proceedings of the 2016 International Conference “Economic Science for Rural Development”, 41, 53-60.
Dyszy, M., & Zuzańska-Żyśko, E. (2018). Migrations of population to rural areas as suburbanization development factor (suburban areas) in Górnośląsko-Zagłębiowska Metropolis. Proceedings 2018, 335-344. Geobalcanica Society. https://doi.org/10.18509/GBP.2018.37
European Commission. (2010). Geographical and labour market mobility (No. 337).
Gleich, D. F. (2015). PageRank beyond the web. SIAM Review, 57(3), 321-363. https://doi.org/10.1137/140976649
Goetz, S. J., Han, Y., Findeis, J. L., & Brasier, K. J. (2010). U.S. commuting networks and economic growth: Measurement and implications for spatial policy. Growth and Change, 41(2), 276-302. https://doi.org/10.1111/j.1468-2257.2010.00527.x
Gonçalves, J. A. M., Portugal, L. da S., & Nassi, C. D. (2009). Centrality indicators as an instrument to evaluate the integration of urban equipment in the area of influence of a rail corridor. Transportation Research Part A, 43(1), 13-25. https://doi.org/10.1016/j.tra.2008.06.010
Graif, C., Lungeanu, A., & Yetter, A. M. (2017). Neighborhood isolation in Chicago: Violent crime effects on structural isolation and homophily in inter-neighborhood commuting networks. Social Networks, 51, 40-59. https://doi.org/10.1016/j.socnet.2017.01.007
Green, N. (2007). Functional polycentricity: A formal definition in terms of social network analysis. Urban Studies, 44(11), 2077-2103. https://doi.org/10.1080/00420980701518941
Handy, S., & Thigpen, C. (2019). Commute quality and its implications for commute satisfaction: Exploring the role of mode, location, and other factors. Travel Behaviour and Society, 16, 241-248. https://doi.org/10.1016/j.tbs.2018.03.001
Hebel, K., & Wyszomirski, O. (2019). Commuting to places of work and study in the light of marketing research results with particular emphasis on Gdynia in Poland. In M. Suchanek (Ed.), Challenges of urban mobility, transport companies and systems: 2018 TranSopot conference (pp. 47-60). Springer International Publishing. https://doi.org/10.1007/978-3-03017743-0
Hook, H., De Vos, J., Van Acker, V., & Witlox, F. (2021). Do travel options influence how commute time satisfaction relates to the residential built environment? Journal of Transport Geography, 92, 103021. https://doi.org/10.1016/j.jtrangeo.2021.103021
Hu, X., Huang, J., & Shi, F. (2019). Circuity in China’s high-speed-rail network. Journal of Transport Geography, 80, 102504. https://doi.org/10.1016/j.jtrangeo.2019.102504
Huang, X., Zhao, Y., Ma, C., Yang, J., Ye, X., & Zhang, C. (2016). TrajGraph: A graph-based visual analytics approach to studying urban network centralities using taxi trajectory data. IEEE Transactions on Visualization and Computer Graphics, 22(1), 160-169. https://doi.org/10.1109/TVCG.2015.2467771
Idczak, P. (2012). Geograficzny wymiar luki kompetencyjnej na rynku pracy UE. Kwartalnik Ekonomistów i Menedżerów, 25(3), 73-89. https://doi.org/10.5604/01.3001.0009.6272
Irwin, M. D., & Hughes, H. L. (1992). Centrality and the structure of urban interaction: Measures, concepts, and applications. Social Forces, 71(1), 17. https://doi.org/10.2307/2579964
Janicka, A., & Kaczmarczyk, P. (2016). Mobilities in the crisis and post-crisis times: Migration strategies of Poles on the EU labour market. Journal of Ethnic and Migration Studies, 42(10), 1693-1710. https://doi.org/10.1080/1369183X.2016.1162350
Jarmołowicz, W., & Knapińska, M. (2011). Współczesne teorie rynku pracy a mobilność i przepływy pracowników w dobie globalizacji. Zeszyty Naukowe PTE, 9, 123-144.
Jaźwińska, E. (2013). Kariery i mobilność społeczno-zawodowa migrantów poakcesyjnych. CMR Working Papers, 65/123.
Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of the ACM, 46(5), 604-632. https://doi.org/10.1145/324133.324140
Kwaśniewska, M., Kaczmarczyk-Chałas, K., Pikala, M., Broda, Kozakiewicz, K., Pająk, A., … Drygas, W. (2010). Sociodemographic and lifestyle correlates of commuting activity in Poland. Preventive Medicine, 50(5-6), 257-261. https://doi.org/10.1016/j.ypmed.2010.02.011
Lewandowska-Gwarda, K., & Antczak, E. (2015). Analysis of internal emigration in Poland using the spatial dynamic shift-share method. Argumenta Oeconomica, 2(35), 123-143. https://doi.org/10.15611/aoe.2015.2.07
Lityński, P., & Serafin, P. (2021). Polynuclearity as a spatial measure of urban sprawl: Testing the percentiles approach. Land, 10(7), 732. https://doi.org/10.3390/land10070732
Liu, X., Wu, J., Huang, J., Zhang, J., Chen, B. Y., & Chen, A. (2021). Spatial-interaction network analysis of built environmental influence on daily public transport demand. Journal of Transport Geography, 92, 102991. https://doi.org/10.1016/j.jtrangeo.2021.102991
Lorens, P., & Golędzinowska, A. (2022). Developing polycentricity to shape resilient metropolitan structures: The case of the Gdansk–Gdynia–Sopot metropolitan area. Urban Planning, 7(3), 159-171. https://doi.org/10.17645/up.v7i3.5502
Marcińczak, S., & Bartosiewicz, B. (2018). Commuting patterns and urban form: Evidence from Poland. Journal of Transport Geography, 70, 31-39. https://doi.org/10.1016/j.jtrangeo.2018.05.019
Neal, Z. P. (2011a). Differentiating centrality and power in the world city network. Urban Studies, 48(13), 2733-2748. https://doi.org/10.1177/0042098010388954
Neal, Z. P. (2011b). From central places to network bases: A transition in the U.S. urban hierarchy, 1900–2000. City & Community, 10(1), 49-75. https://doi.org/10.1111/j.1540-6040.2010.01340.x
Niedzielski, M. A., Hu, Y., & Stępniak, M. (2020). Temporal dynamics of the impact of land use on modal disparity in commuting efficiency. Computers, Environment and Urban Systems, 83, 101523. https://doi.org/10.1016/j.compenvurbsys.2020.101523
Osama, A., & Sayed, T. (2017). Evaluating the impact of connectivity, continuity, and topography of sidewalk networks on pedestrian safety. Accident Analysis & Prevention, 107, 117-125. https://doi.org/10.1016/j.aap.2017.08.001
Patuelli, R., Reggiani, A., Gorman, S. P., Nijkamp, P., & Bade, F.-J. (2007). Network analysis of commuting flows: A comparative static approach to German data. Networks and Spatial Economics, 7(4), 315-331. https://doi.org/10.1007/s11067-0079027-6 Porta, S., Strano, E., Iacoviello, V., Messora, R., Latora, V., Cardillo, A., Wang, F., & Scellato, S. (2009). Street centrality and densities of retail and services in Bologna, Italy. Environment and Planning B: Planning and Design, 36(3), 450–465. https://doi.org/10.1068/b34098
Porta, S., Latora, V., Wang, F., Rueda, S., Strano, E., Scellato, S., Cardillo, A., Belli, E., Càrdenas, F., Cormenzana, B., & Latora, L. (2012). Street centrality and the location of economic activities in Barcelona. Urban Studies, 49(7), 1471-1488. https://doi.org/10.1177/0042098011422570
Rhoads, D., Solé-Ribalta, A., & Borge-Holthoefer, J. (2023). The inclusive 15-minute city: Walkability analysis with sidewalk networks. Computers, Environment and Urban Systems, 100, 101936. https://doi.org/10.1016/j.compenvurbsys.2022.101936
Rosik, P., Stępniak, M., & Wiśniewski, R. (2010). Dojazdy do pracy do Warszawy i Białegostoku – alternatywne podejścia metodologiczne. Studia Regionalne i Lokalne, 40, 77-98.
Scott, J. (1988). Social network analysis. Sociology, 22(1), 109-127. https://doi.org/10.1177/0038038588022001007
Serra, M., & Hillier, B. (2019). Angular and metric distance in road network analysis: A nationwide correlation study. Computers, Environment and Urban Systems, 74, 194-207. https://doi.org/10.1016/j.compenvurbsys.2018.11.003
Statistics Poland. (2019). Przepływy ludności związane z zatrudnieniem w 2016 r. Retrieved from https://stat.gov.pl/obszarytematyczne/rynek-pracy/opracowania/przeplywy-ludnosci-zwiazane-z-zatrudnieniem-w-2016-r-,20,1.html
Statistics Poland. (2022). Bank Danych Lokalnych. Retrieved from https://bdl.stat.gov.pl/bdl/
Stepniak, M., & Rosik, P. (2013). Accessibility improvement, territorial cohesion and spillovers: A multidimensional evaluation of two motorway sections in Poland. Journal of Transport Geography, 31, 154-163. https://doi.org/10.1016/j.jtrangeo.2013.06.017
Szczech-Pietkiewicz, E., Radło, M.-J., & Tomeczek, A. F. (2022). Powiązania miast w województwie mazowieckim: Determinanty i konstrukcja modelu funkcjonalnego województwa. Szkoła Główna Handlowa w Warszawie. https://doi.org/10.33119/978-83-8030-527-4.2022
Śleszyński, P., & Sudra, P. (2019). Zastosowanie metody minimalnego drzewa rozpinającego (najkrótszego dendrytu) w ocenie efektywności i spójności sieci osadniczej województwa mazowieckiego. Przegląd Geograficzny, 91(2), 61-80. https://doi.org/10.7163/PrzG.2019.2.4
Tomeczek, A. F., Radło, M.-J., & Szczech-Pietkiewicz, E. (2023). Inter-municipality commuting in Poland: Network analysis data and graphs [Dataset]. Mendeley. https://doi.org/10.17632/ZZR5WHKDS3.1
Tobolska, A. (2010). Commuting as a spatial feature of international concern’s location in a major city. The example of Poznań. Bulletin of Geography. Socio-Economic Series, 13(13), 5-17. https://doi.org/10.2478/v10089-010-0001-6
Tsiotas, D., & Polyzos, S. (2015). Introducing a new centrality measure from the transportation network analysis in Greece. Annals of Operations Research, 227(1), 93-117. https://doi.org/10.1007/s10479-013-1434-0
Wang, S., Xu, G., & Guo, Q. (2018). Street centralities and land use intensities based on points of interest (POI) in Shenzhen, China. ISPRS International Journal of Geo-Information, 7(11), 425. https://doi.org/10.3390/ijgi7110425
Wang, M., Chen, Z., Mu, L., & Zhang, X. (2020). Road network structure and ride-sharing accessibility: A network science perspective. Computers, Environment and Urban Systems, 80, 101430. https://doi.org/10.1016/j.compenvurbsys.2019.101430
Wang, Y., Deng, Y., Ren, F., Zhu, R., Wang, P., Du, T., & Du, Q. (2020). Analysing the spatial configuration of urban bus networks based on the geospatial network analysis method. Cities, 96, 102406. https://doi.org/10.1016/j.cities.2019.102406
Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge University Press.
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393, 440-442. https://doi.org/10.1038/30918
Węgrzyn, G. (2016). Mobilność zawodowa a sytuacja na rynku pracy. Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach, 276, 137-147.
Wielechowski, M., Czech, K., & Grzęda, Ł. (2020). Decline in mobility: Public transport in Poland in the time of the COVID-19 pandemic. Economies, 8(4), 78. https://doi.org/10.3390/economies8040078
Wiśniewski, R. (2012). Codzienne dojazdy do pracy – metodyczne aspekty badania wielkości i struktury dojazdów na przykładzie Białegostoku. Studia Regionalne i Lokalne, 49, 50-64. Transportation Research Part D: Transport and Environment, 67, 553-564. https://doi.org/10.1016/j.trd.2018.12.023 Wu, W., Wang, M. (Xin), & Zhang, F. (2019). Commuting behavior and congestion satisfaction: Evidence from Beijing, China.
Wu, C., Smith, D., & Wang, M. (2021). Simulating the urban spatial structure with spatial interaction: A case study of urban polycentricity under different scenarios. Computers, Environment and Urban Systems, 89, 101677. https://doi.org/10.1016/j.compenvurbsys.2021.101677
Zhang, D., Ji, Q., Zhao, W.-L., & Horsewood, N. J. (2021). Regional housing price dependency in the UK: A dynamic network approach. Urban Studies, 58(5), 1014-1031. https://doi.org/10.1177/0042098020943489
Zhang, W., Gong, Z., Niu, C., Zhao, P., Ma, Q., & Zhao, P. (2022). Structural changes in intercity mobility networks of China during the COVID-19 outbreak: A weighted stochastic block modeling analysis. Computers, Environment and Urban Systems, 96, 101846. https://doi.org/10.1016/j.compenvurbsys.2022.101846
Zhang, Y., Marshall, S., & Manley, E. (2021). Understanding the roles of rail stations: Insights from network approaches in the London metropolitan area. Journal of Transport Geography, 94, 103110. https://doi.org/10.1016/j.jtrangeo.2021.103110
Zhao, S., Zhao, P., & Cui, Y. (2017). A network centrality measure framework for analyzing urban traffic flow: A case study of Wuhan, China. Physica A: Statistical Mechanics and Its Applications, 478, 143-157. https://doi.org/10.1016/j.physa.2017.02.069
Zhong, C., Arisona, S. M., Huang, X., Batty, M., & Schmitt, G. (2014). Detecting the dynamics of urban structure through spatial network analysis. International Journal of Geographical Information Science, 28(11), 2178-2199. https://doi.org/10.1080/13658816.2014.914521
Zhu, J., & Fan, Y. (2018a). Commute happiness in Xi’an, China: Effects of commute mode, duration, and frequency. Travel Behaviour and Society, 11, 43-51. https://doi.org/10.1016/j.tbs.2018.01.001
Zhu, J., & Fan, Y. (2018b). Daily travel behavior and emotional well-being: Effects of trip mode, duration, purpose, and companionship. Transportation Research Part A: Policy and Practice, 118, 360-373. https://doi.org/10.1016/j.tra.2018.09.019
Downloads
Published
License
Copyright (c) 2025 Artur F. Tomeczek, Mariusz-Jan Radło, Ewelina Szczech-Pietkiewicz

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Accepted 2024-02-22
Published 2025-03-13