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Abstract: In the paper mathematical tools for quantile hedging in an incomplete market are 
developed. Those could be used for two significant applications. The first one is calculating the 
optimal capital requirement imposed by Solvency II when the market and non-market risks are 
present in an insurance company. We show how to find the minimal capital V0 to provide the one-
year hedging strategy for an insurance company satisfying 𝔼𝔼[𝟏𝟏{𝑽𝑽𝟏𝟏≥𝑫𝑫}] = 𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗 , where V1 
denotes the value of the company’s assets after one year, and D is the payoff of the contract. The 
second application is to find a hedging strategy for a derivative that does not use the underlying 
asset itself, but another asset whose dynamics are correlated with – or otherwise stochastically 
dependent on – those of the underlying. The paper generalises the results of obtained by Klusik 
and Palmowski in 2011. 
Keywords: quantile hedging, Solvency II, capital modelling, hedging options on a non-tradable 
asset 

1. Introduction 

Directive of 25 November 2009 on the taking-up and pursuit of the business of Insurance and 
Reinsurance (Solvency II) introduces new capital regimes on insurance companies (Directive 
2009/138/EC…). According to Chapter 6, Section 4, Art. 101, p. 3: “The Solvency Capital 
Requirement shall be calibrated so as to ensure that all quantifiable risks to which an insurance 
or reinsurance undertaking is exposed are taken into account. It shall cover existing business, as 
well as the new business expected to be written over the following 12 months. With respect to 
existing business, it shall cover only unexpected losses. 
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It shall correspond to the Value-at-Risk of the basic own funds of an insurance or reinsurance 
undertaking subject to a confidence level of 99,5 % over a one-year period.” 

Further according to p. 4: “The Solvency Capital Requirement shall cover at least the following 
risks: 

• non-life underwriting risk, 
• life underwriting risk, 
• health underwriting risk, 
• market risk, 
• credit risk, 
• operational risk.” 

The key question raised by this regulation is: how much capital is sufficient to hedge against risks 
with a 99.5% probability? What is important here from the mathematical point of view, is that 
the risk involves market and nonmarket factors, which means that it cannot be dealt using just 
the real expectations probability measure. Insurance companies usually neglect this, although 
this neglect opposes the widely accepted Black-Scholes approach. 

Mathematically speaking, we ask for minimal 𝑉𝑉0  ensuring the probability of satisfying all the 
claims 𝔼𝔼�𝟏𝟏{𝑉𝑉1≥𝐷𝐷}� ≥ 0.995, where 𝐷𝐷 denotes the contingent claim and 𝑉𝑉𝑡𝑡 denotes the value of 
the hedging portfolio at time 𝑡𝑡. Equivalently, we can fix the capital and look for a strategy with 
the maximal probability of a successful hedging. 

This problem was solved in literature only for complete markets (besides Sekine (2000) and Klusik 
& Palmowski (2011)), i.e. for financial positions which do not allow for typical insurance risk. 

Föllmer & Leukert (1999) investigated the general semimartingale setting. They pointed out the 
optimal strategy for a complete market with maximal 𝐸𝐸[𝟏𝟏{𝑉𝑉1≥𝐷𝐷}]. The proofs are based on various 
versions of the Neyman-Pearson lemma. Spivak & Cvitanić (1999) studied a complete market 
framework of assets modelled with Ito processes. They also constructed a strategy with maximal 
𝐸𝐸[𝟏𝟏{𝑉𝑉1≥𝐷𝐷}] but using different proof methods. They also implemented this technique for a market 
with partial observations. Finally they considered the case where the drift of the wealth process 
was a nonlinear (concave) function of the investment strategy of the agent. 

Klusik, Palmowski, and Zwierz (2010) solved the problem of the quantile hedging from the point 
of view of a better informed agent acting on the market. The additional knowledge of the agent 
was modelled by a filtration initially enlarged by some random variables. 

Sekine (2000) considered defaultable securities in a very simple incomplete market, where 
a security-holder could default at some random times and received a payoff modelled by a martingale 
process. The author showed a strategy maximising the probability of a successful hedge. 

A more complex incomplete market was studied by Klusik and Palmowski (2011). They considered 
the equity-linked product where the insurance event could take a finite number of states and was 
independent of a financial asset modelled by a geometric Brownian motion. They constructed the 
optimal strategy for both: the maximal probability and the maximal expected success ratio. In 
their framework the knowledge about the insurance event was not revealed before the maturity. 

In this paper we state a general problem of optimising probability of non-insolvency 𝔼𝔼[𝟏𝟏{𝑉𝑉1≥𝐷𝐷}] 
in an incomplete market, as in (Klusik & Palmowski, 2011), but we allow a very general flow of 
information outside the market and a very general space of possible non-market events. As it was 
said at the beginning the solution of this problem gives a solution to Solvency II problem. 

In fact, the solution extends beyond Solvency II and applies to pricing instruments in incomplete 
markets. These include equity-linked instruments or options on illiquid assets traded exclusively 
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over-the-counter. In such scenarios, constructing a replicating strategy is often infeasible. For 
comparison, in complete markets, the pricing process is significantly simpler, as the instrument’s 
price equals the value of a replicating portfolio. 

Conversely, for non-replicable instruments found in incomplete markets (e.g., equity-linked 
products), such portfolios do not exist. To achieve full protection, one must construct a portfolio 
capable of hedging against highly expensive and practically improbable worst-case scenarios. This 
is known as superhedging – a strategy designed to handle worst-case outcomes, albeit with 
prohibitive costs in practice. Alternatively, the option price is very often calculated as an expectation 
under a subjective probability measure, which, while typically appropriate in insurance contexts, is 
often flawed in financial theory when market risks tied to stock exchanges are present. 

From a practical perspective, many institutions rely on a straightforward approach to hedge 
financial instruments, employing a correlated liquid asset in place of the underlying asset, based 
on the intuition that this method is sufficiently effective. The main advantage of this approach is 
its simplicity, avoiding the need for complex quantitative analysis while maintaining the belief 
that it adequately mitigates risk in most practical scenarios. However, this approach has 
significant drawbacks, including a lack of rigorous quantitative control, a reliance on potentially 
flawed intuition, and the susceptibility of various risk indicators to human error. 

This paper is organized as follows. Section 2 introduces the financial market model and the 
associated optimization problem. We also define and provide the price of the hedging strategy. 

In section 3, we present the application of our result for hedging the European put option on 
a non-tradable asset. We calculate the cost of a hedging strategy using another asset whose price 
process is partially dependent on the underlying. In the numerical calculation, we assume that 
both price processes are driven by correlated geometric Brownian motions. 

2. Mathematical Model 

Consider a discounted price process 𝕏𝕏 =  (𝑋𝑋𝑡𝑡)𝑡𝑡∈[0,𝑇𝑇] which is a semimartingale on a probability 
space (Ω,ℱ,ℙ) adapted to filtration 𝔽𝔽 =  (ℱ𝑡𝑡)𝑡𝑡∈[0,𝑇𝑇],ℱT =  ℱ. Note that 𝔽𝔽 may be substantially 
greater than filtration generated by 𝕏𝕏. The interpretation is as follows: the knowledge modelled 
by 𝔽𝔽 could be augmented by information from outside the market. The augmentation of filtration 
could be interpreted as the information signal about non-market variables affecting the value of 
a contract. An example: the ‘life’ part of information about the equity-linked contract. We will 
assume that ℱ = ℱT. 

Denote the set of all equivalent martingale measures by 𝒫𝒫 and assume that the market does not 
allow for arbitrage, i.e. 𝒫𝒫 ≠ ∅. 

A self-financing admissible trading strategy is a pair (𝑉𝑉0, 𝜉𝜉), where 𝑉𝑉0 is a constant and 𝜉𝜉 is an 𝔽𝔽-
predictable process on [0,𝑇𝑇] for which the value process 𝑉𝑉𝑡𝑡 ≔ 𝑉𝑉0 + ∫ 𝜉𝜉𝑢𝑢𝑑𝑑𝑋𝑋𝑢𝑢

𝑡𝑡
0 , 𝑡𝑡 ∈  [0,𝑇𝑇], is well 

defined and 𝑉𝑉𝑡𝑡  ≥  0 ℙ-almost surely for all 𝑡𝑡 ∈  [0,𝑇𝑇]. 

Fix an initial capital 𝑉𝑉�0 and denote by 𝒜𝒜 the set of all admissible strategies (𝑉𝑉0, 𝜉𝜉) such that 𝑉𝑉0 ≤ 𝑉𝑉�0. 

For nonnegative real 𝑣𝑣,𝑑𝑑  define a success factor 𝜙𝜙𝑑𝑑𝑣𝑣  assuming values in [0,1] such that 𝜙𝜙𝑑𝑑𝑣𝑣  is 
a nondecreasing function of 𝑣𝑣  for every (or each) 𝑑𝑑 . The following functions can serve as 
examples of the success factor: 𝜙𝜙𝑑𝑑𝑣𝑣: = 1{𝑣𝑣≥𝑑𝑑} and 𝜙𝜙𝑑𝑑𝑣𝑣: = 1{𝑣𝑣≥𝑑𝑑} + 1{𝑣𝑣<𝑑𝑑}

𝑣𝑣
𝑑𝑑

. 

For a contingent claim 𝐷𝐷 being an ℱ𝑇𝑇-measurable nonnegative random variable we formulate the 
following problem: 
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Problem 2.1. Find (𝑉𝑉0, 𝜉𝜉) ∈ 𝒜𝒜 maximising the expected success factor 𝔼𝔼ℙ[𝜙𝜙𝐷𝐷
𝑉𝑉𝑇𝑇].  

Before solving this problem, we introduce the following notation: For any increasing function 
𝑔𝑔: [0,∞)  → ℝ and positive constant 𝑚𝑚: 

 𝜋𝜋𝑚𝑚
𝑔𝑔 ≔ min{arg min

𝑥𝑥≥0
(𝑚𝑚𝑚𝑚 − 𝑔𝑔(𝑥𝑥))} . (2.1) 

In the event that 𝑚𝑚𝑚𝑚 − 𝑔𝑔(𝑥𝑥) attains its minimum at multiple points, we define 𝜋𝜋𝑚𝑚
𝑔𝑔  as the smallest 

(or first) such point, in order to avoid ambiguity. 

From this definition we see that for 𝑥𝑥 ≥ 0 : 

𝑚𝑚𝑚𝑚 − 𝑔𝑔(𝑥𝑥) ≥ 𝑚𝑚𝜋𝜋𝑚𝑚
𝑔𝑔 − 𝑔𝑔(𝜋𝜋𝑚𝑚

𝑔𝑔 ), i.e. 

𝑔𝑔�𝑚𝑚(𝑥𝑥): = 𝑚𝑚�𝑥𝑥 − 𝜋𝜋𝑚𝑚
𝑔𝑔 �+ 𝑔𝑔(𝜋𝜋𝑚𝑚

𝑔𝑔 ) ≥ 𝑔𝑔(𝑥𝑥) 

and equality holds at 𝑥𝑥 = 𝜋𝜋𝑚𝑚
𝑔𝑔 . Consequently, 𝑔𝑔�𝑚𝑚  can be viewed as the line with slope 𝑚𝑚 that 

‘touches’ 𝑔𝑔 from above at 𝑥𝑥 = 𝜋𝜋𝑚𝑚
𝑔𝑔  (see Fig. 1). 

 

Figure 1. The picture shows the relation between g, 𝑔𝑔�𝑚𝑚,𝑚𝑚 and 𝜋𝜋𝑚𝑚
𝑔𝑔  

Source: own elaboration. 

Fix a measure ℚ ∈ 𝒫𝒫 and define 

 𝐺𝐺ℚ(𝑥𝑥) ≔ 𝔼𝔼ℚ �𝑑𝑑ℙ
𝑑𝑑ℚ
𝜙𝜙𝐷𝐷𝑥𝑥|𝕏𝕏�.  (2.2) 

Note that, for almost every 𝜔𝜔, the function 𝒙𝒙 ↦ 𝐺𝐺ℚ(𝑥𝑥)(𝜔𝜔) is increasing in 𝑥𝑥.  

Assume that there is a positive constant 𝑚𝑚 that 𝜋𝜋𝑚𝑚
𝐺𝐺ℚ  exists for almost every 𝜔𝜔 , and that the 

random variable 𝜋𝜋𝑚𝑚
𝐺𝐺ℚ  is replicable with a strategy (𝑉𝑉0∗, 𝜉𝜉∗) where 𝑉𝑉0∗ = 𝑉𝑉�0. That is, 

 𝜋𝜋𝑚𝑚
𝐺𝐺ℚ =  𝑉𝑉0∗ +  ∫ 𝜉𝜉𝑢𝑢∗𝑑𝑑𝑋𝑋𝑢𝑢.𝑇𝑇

0   (2.3) 

Remark 2.1. Note that the above assumption is always satisfied if all measures in 𝒫𝒫 coincide on 
𝜎𝜎(𝕏𝕏). This holds because 𝜋𝜋𝑚𝑚

𝐺𝐺ℚ  is 𝜎𝜎(𝕏𝕏)-measurable. In particular, this applies to the complete-
market case extended with contingent claims dependent on a randomness from outside the 

𝜋𝜋𝑚𝑚
𝑔𝑔  

𝑔𝑔 
𝑔𝑔� (with slope 𝑚𝑚) 

𝑎𝑎 
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market (also in a situation when the information outside the market is revealed continuously till 
the moment of maturity). In the next section we give a numerical procedure to estimate 𝑚𝑚 by the 
Monte Carlo simulation. 

From now on, we write π as a shortcut to 𝜋𝜋𝑚𝑚
𝐺𝐺ℚ . 

Theorem 2.1. (𝑉𝑉0∗, 𝜉𝜉∗) is a solution to Problem 2.1 with the expected success factor equal 𝔼𝔼ℙ[𝜙𝜙𝐷𝐷𝜋𝜋]. 

Proof. For any (𝑉𝑉0, 𝜉𝜉) ∈ 𝒜𝒜 holds Eℚ[𝑉𝑉𝑇𝑇 − 𝜋𝜋] ≤ 𝑉𝑉0 − 𝑉𝑉�0 ≤ 0. 

For every 𝑥𝑥 the inequality 𝐺𝐺�ℚ𝑚𝑚(𝑥𝑥) ≥ 𝐺𝐺ℚ(𝑥𝑥) holds a.s., where 𝐺𝐺�ℚ𝑚𝑚(𝑥𝑥) = 𝐺𝐺ℚ(𝜋𝜋) + 𝑚𝑚(𝑥𝑥 − 𝜋𝜋). Thus 
𝔼𝔼ℚ[𝐺𝐺�ℚ𝑚𝑚(𝑥𝑥)] ≥ 𝔼𝔼ℚ[𝐺𝐺ℚ(𝑥𝑥)], i.e. 

 . (2.4) 

Note that (𝑉𝑉0∗, 𝜉𝜉∗) ∈ 𝒜𝒜 because 𝑉𝑉0∗ = 𝑉𝑉�0, so the left side of the inequality is attainable. 

3. Applications 

3.1. Hedging Contingent Without Underlying 

We consider a situation where we sell a European put option on non-tradable asset 𝑌𝑌 with the 
payoff 𝐷𝐷 =  (𝐾𝐾 − 𝑌𝑌𝑇𝑇 )+ . We are going to hedge it using tradable asset X with the strategy 
maximising ℙ(𝑉𝑉𝑇𝑇  ≥  𝐷𝐷). Assume that the dynamics of two price processes are given by the 
following equations 

𝑑𝑑𝑋𝑋𝑡𝑡 = 𝜇𝜇𝑋𝑋𝑋𝑋𝑡𝑡𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑋𝑋𝑋𝑋𝑡𝑡𝑑𝑑𝑊𝑊𝑡𝑡
𝑋𝑋, 𝑋𝑋0 = 𝑥𝑥0 > 0, 

 𝑑𝑑𝑌𝑌𝑡𝑡 = 𝜇𝜇𝑌𝑌𝑌𝑌𝑡𝑡𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑌𝑌𝑌𝑌𝑡𝑡𝑑𝑑𝑊𝑊𝑡𝑡
𝑌𝑌, 𝑌𝑌0 = 𝑦𝑦0 > 0, (3.1) 

where we assume a correlation 𝜌𝜌  between two Brownian motions 𝑊𝑊𝑌𝑌  and 𝑊𝑊𝑋𝑋 , i.e. 𝑊𝑊𝑌𝑌 =
𝜌𝜌𝑊𝑊𝑋𝑋 + �1 − 𝜌𝜌2𝑊𝑊 where 𝑊𝑊  is a Brownian motion independent of 𝑊𝑊𝑋𝑋 . We assume that the 
interest rate is equal to zero. For 0 < x < D we have  

, 

where 𝛷𝛷  denotes the cdf of the standard normal distribution. We describe the sketch of 
numerical algorithm basing on a Monte Carlo approach: 
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1. Fix a real number 𝑚𝑚 ≥  0 and integers 𝑁𝑁𝑥𝑥  >  0,𝑁𝑁𝑊𝑊  >  0. 
2. Draw a sample 𝑤𝑤1, … ,𝑤𝑤𝑁𝑁𝑊𝑊  from the normal distribution with mean 0 and variance 𝑇𝑇. 

3. For every 𝑖𝑖 =  1, … ,𝑁𝑁𝑊𝑊  find 𝑥𝑥 from the set {0, 1𝐾𝐾
𝑁𝑁𝑥𝑥

, 2𝐾𝐾
𝑁𝑁𝑥𝑥

, … ,𝑁𝑁𝑥𝑥𝐾𝐾
𝑁𝑁𝑥𝑥

} maximising the expression 

 

and denote it by 𝑥𝑥max(𝑖𝑖). 

4. The solution is as follows: for an initial capital equal to 

 

maximal expected success factor is equal to 

. 

Different 𝑚𝑚 would give a different initial capital and expected success factor. 

Figure 2 shows the results of simulations for the European put option maturing at time 𝑇𝑇 =  1 with 
the strike 𝐾𝐾 =  1. The price dynamics follows 3.1 with parameters 𝜇𝜇𝑋𝑋 = 𝜇𝜇𝑌𝑌 = 0.1, 𝜎𝜎𝑋𝑋 = 𝜎𝜎𝑌𝑌 =
0.3, 𝑌𝑌0 = 𝑋𝑋0 = 1. The diagram illustrates the dependence for different levels of 𝜌𝜌. 

 

Figure 2. The results of numerical simulations for the described algorithm 

Source: own elaboration. 
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One could verify that as expected if 𝑋𝑋 almost mimics 𝑌𝑌 (i.e. 𝜌𝜌 is almost 1), the hedging strategy 
with 𝑋𝑋 should be very close to the hedging strategy with 𝑌𝑌 if 𝑌𝑌 was tradable. The cost of the latter 
is equal 0.119235 as the result of the standard Black-Scholes formula. 

3.2. Applications: Solvency II 

Insurance companies often neglect market risk modelling during capital modelling in the case of 
instruments dependent on both insurance and market risks. For instance, in the case of an equity-
linked portfolio, the stochastic nature of the instrument with respect to market risks (such as 
stock prices) is frequently disregarded, with modelling efforts focused solely on typically 
insurance-related risks. 

This underscores the importance of our approach, which effectively addresses this issue. Our 
solution provides a strategy to achieve the minimal probability of insolvency (in terms of Problem 
2.1, we have 𝜙𝜙𝑑𝑑𝑣𝑣: = 1{𝑣𝑣≥𝑑𝑑}  and 𝐷𝐷  represents all liabilities of the insurance company at time 
𝑇𝑇 = 1). Alternatively, for a given probability (e.g., 0.995 as required by Solvency II), it determines 
the minimal capital required.  

Unlike conventional practices that often yield non-optimal static (or nearly static) positions, our 
solution provides the optimal strategy, which usually requires dynamic investment in underlying 
assets, ensuring a more accurate and effective approach to risk management. 
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rynkowe i nierynkowe. Pokazujemy, jak znaleźć minimalny kapitał V0, który zapewnia 

https://link.springer.com/article/10.1007/s007800050062
https://doi.org/10.1016/j.insmatheco.2010.12.002
https://wuwr.pl/pms/article/view/6894/6540
https://www.kurims.kyoto-u.ac.jp/%7Ekyodo/kokyuroku/contents/pdf/1165-13.pdf
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ubezpieczycielowi roczną strategię hedgingową spełniającą warunek 𝔼𝔼[𝟏𝟏{𝑽𝑽𝟏𝟏≥𝑫𝑫}] = 𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗, gdzie 
V1 oznacza wartość aktywów przedsiębiorstwa po roku, a D jest wartością zobowiązań. Podejście 
uwzględnia jednocześnie ryzyka rynkowe i pozarynkowe, dzięki czemu stanowi narzędzie do 
wyznaczania wymogu kapitałowego SCR w ramach Solvency II. Drugim zastosowaniem jest 
skonstruowanie strategii zabezpieczającej dla instrumentu pochodnego bez handlu aktywem 
bazowym, lecz z wykorzystaniem innego aktywa, którego dynamika jest skorelowana z dynamiką 
aktywa bazowego (lub w inny sposób stochastycznie od niej zależna). Artykuł uogólnia wyniki 
uzyskane przez Klusika i Palmowskiego w 2011 roku. 

Słowa kluczowe: zabezpieczenie kwantylowe, Solvency II, modelowanie kapitału, hedging opcji 
na aktywo niehandlowalne 
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