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Abstract: In the paper mathematical tools for quantile hedging in an incomplete market are
developed. Those could be used for two significant applications. The first one is calculating the
optimal capital requirement imposed by Solvency Il when the market and non-market risks are
present in an insurance company. We show how to find the minimal capital V;, to provide the one-
year hedging strategy for an insurance company satisfying ]E[l{VlzD}] = 0.995, where \;
denotes the value of the company’s assets after one year, and D is the payoff of the contract. The
second application is to find a hedging strategy for a derivative that does not use the underlying
asset itself, but another asset whose dynamics are correlated with — or otherwise stochastically
dependent on — those of the underlying. The paper generalises the results of obtained by Klusik
and Palmowski in 2011.

Keywords: quantile hedging, Solvency I, capital modelling, hedging options on a non-tradable
asset

1. Introduction

Directive of 25 November 2009 on the taking-up and pursuit of the business of Insurance and
Reinsurance (Solvency Il) introduces new capital regimes on insurance companies (Directive
2009/138/EC...). According to Chapter 6, Section 4, Art. 101, p. 3: “The Solvency Capital
Requirement shall be calibrated so as to ensure that all quantifiable risks to which an insurance
or reinsurance undertaking is exposed are taken into account. It shall cover existing business, as
well as the new business expected to be written over the following 12 months. With respect to
existing business, it shall cover only unexpected losses.
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undertaking subject to a confidence level of 99,5 % over a one-year period.” Nr 22(28)

Further according to p. 4: “The Solvency Capital Requirement shall cover at least the following
risks:

e non-life underwriting risk,
e life underwriting risk,
health underwriting risk,
market risk,

o credit risk,

e operational risk.”

The key question raised by this regulation is: how much capital is sufficient to hedge against risks
with a 99.5% probability? What is important here from the mathematical point of view, is that
the risk involves market and nonmarket factors, which means that it cannot be dealt using just
the real expectations probability measure. Insurance companies usually neglect this, although
this neglect opposes the widely accepted Black-Scholes approach.

Mathematically speaking, we ask for minimal V, ensuring the probability of satisfying all the
claims ]E[l{VlzD}] = 0.995, where D denotes the contingent claim and V; denotes the value of
the hedging portfolio at time t. Equivalently, we can fix the capital and look for a strategy with
the maximal probability of a successful hedging.

This problem was solved in literature only for complete markets (besides Sekine (2000) and Klusik
& Palmowski (2011)), i.e. for financial positions which do not allow for typical insurance risk.

Follmer & Leukert (1999) investigated the general semimartingale setting. They pointed out the
optimal strategy for a complete market with maximal E[1{V12D}]. The proofs are based on various
versions of the Neyman-Pearson lemma. Spivak & Cvitani¢ (1999) studied a complete market
framework of assets modelled with Ito processes. They also constructed a strategy with maximal
E[1(y,>p;] but using different proof methods. They also implemented this technique for a market
with partial observations. Finally they considered the case where the drift of the wealth process
was a nonlinear (concave) function of the investment strategy of the agent.

Klusik, Palmowski, and Zwierz (2010) solved the problem of the quantile hedging from the point
of view of a better informed agent acting on the market. The additional knowledge of the agent
was modelled by a filtration initially enlarged by some random variables.

Sekine (2000) considered defaultable securities in a very simple incomplete market, where
a security-holder could default at some random times and received a payoff modelled by a martingale
process. The author showed a strategy maximising the probability of a successful hedge.

A more complexincomplete market was studied by Klusik and Palmowski (2011). They considered
the equity-linked product where the insurance event could take a finite number of states and was
independent of a financial asset modelled by a geometric Brownian motion. They constructed the
optimal strategy for both: the maximal probability and the maximal expected success ratio. In
their framework the knowledge about the insurance event was not revealed before the maturity.

In this paper we state a general problem of optimising probability of non-insolvency E[1(y, > p;]
in an incomplete market, as in (Klusik & Palmowski, 2011), but we allow a very general flow of
information outside the market and a very general space of possible non-market events. As it was
said at the beginning the solution of this problem gives a solution to Solvency Il problem.

In fact, the solution extends beyond Solvency Il and applies to pricing instruments in incomplete
markets. These include equity-linked instruments or options on illiquid assets traded exclusively
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over-the-counter. In such scenarios, constructing a replicating strategy is often infeasible. For
comparison, in complete markets, the pricing process is significantly simpler, as the instrument’s
price equals the value of a replicating portfolio.

Conversely, for non-replicable instruments found in incomplete markets (e.g., equity-linked
products), such portfolios do not exist. To achieve full protection, one must construct a portfolio
capable of hedging against highly expensive and practically improbable worst-case scenarios. This
is known as superhedging — a strategy designed to handle worst-case outcomes, albeit with
prohibitive costs in practice. Alternatively, the option price is very often calculated as an expectation
under a subjective probability measure, which, while typically appropriate in insurance contexts, is
often flawed in financial theory when market risks tied to stock exchanges are present.

From a practical perspective, many institutions rely on a straightforward approach to hedge
financial instruments, employing a correlated liquid asset in place of the underlying asset, based
on the intuition that this method is sufficiently effective. The main advantage of this approach is
its simplicity, avoiding the need for complex quantitative analysis while maintaining the belief
that it adequately mitigates risk in most practical scenarios. However, this approach has
significant drawbacks, including a lack of rigorous quantitative control, a reliance on potentially
flawed intuition, and the susceptibility of various risk indicators to human error.

This paper is organized as follows. Section 2 introduces the financial market model and the
associated optimization problem. We also define and provide the price of the hedging strategy.

In section 3, we present the application of our result for hedging the European put option on
a non-tradable asset. We calculate the cost of a hedging strategy using another asset whose price
process is partially dependent on the underlying. In the numerical calculation, we assume that
both price processes are driven by correlated geometric Brownian motions.

2. Mathematical Model

Consider a discounted price process X = (Xt)tE[O,T] which is a semimartingale on a probability
space (Q, F, P) adapted to filtration F = (F;)¢e[o,r), Fr = F. Note that IF may be substantially
greater than filtration generated by X. The interpretation is as follows: the knowledge modelled
by FF could be augmented by information from outside the market. The augmentation of filtration
could be interpreted as the information signal about non-market variables affecting the value of
a contract. An example: the ‘life’ part of information about the equity-linked contract. We will
assume that F = Fr.

Denote the set of all equivalent martingale measures by P and assume that the market does not
allow for arbitrage, i.e. P + 0.

A self-financing admissible trading strategy is a pair (V, £), where V,, is a constant and § is an [F-

predictable process on [0, T] for which the value process V; ==V, + fot & dXy, t € [0,T],is well
defined and V; > 0 P-almost surely forallt € [0,T].

Fix an initial capital ¥, and denote by A the set of all admissible strategies (Vy, §) such that V, < ;.

For nonnegative real v,d define a success factor ¢ assuming values in [0,1] such that ¢ is
a nondecreasing function of v for every (or each) d. The following functions can serve as

examples of the success factor: ¢g: = 1g,24) and ¢g: = 1gzay + 1p<qy g.

For a contingent claim D being an Fr-measurable nonnegative random variable we formulate the
following problem:
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Problem 2.1. Find (V;, £) € A maximising the expected success factor ]E]P[(,bgT].

Before solving this problem, we introduce the following notation: For any increasing function
g:10,00) — R and positive constant m:

nJ = min{arg r;1>i(r)1(mx —g))}. (2.1)

In the event that mx — g(x) attains its minimum at multiple points, we define n;‘il as the smallest
(or first) such point, in order to avoid ambiguity.

From this definition we see that forx = 0 :
mx — g(x) = mnd — g(my), i.e.
Gm():=m(x — ;) + g(m;) = g(x)

and equality holds at x = 71;‘,71. Consequently, §,, can be viewed as the line with slope m that
‘touches’ g from above at x = n;‘il (see Fig. 1).

J (with slope m)

1'[;‘31 a
Figure 1. The picture shows the relation between g, §,,, m and 11;‘,’1
Source: own elaboration.
Fix a measure Q € P and define
ap
Go(x) = E® [@¢§|X]. (2.2)

Note that, for almost every w, the function x = G (x)(w) is increasing in x.

. . G .
Assume that there is a positive constant m that an exists for almost every w, and that the

random variable n,Gn@ is replicable with a strategy (Vg, &*) where V5 = V,. That is,
G . T v
T = Vo + [ &udX,. (2.3)

Remark 2.1. Note that the above assumption is always satisfied if all measures in P coincide on

. Go . . . .
o (X). This holds because an is 0 (X)-measurable. In particular, this applies to the complete-
market case extended with contingent claims dependent on a randomness from outside the
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market (also in a situation when the information outside the market is revealed continuously till
the moment of maturity). In the next section we give a numerical procedure to estimate m by the
Monte Carlo simulation.

Go

From now on, we write 1t as a shortcut to m,,,".

Theorem 2.1. (V, &™) is a solution to Problem 2.1 with the expected success factor equal EP[¢F].
Proof. For any (V,, &) € A holds EQ[V; — ] <V, — V, < 0.

For every x the inequality @(gl(x) = Go(x) holds a.s., where @(gl(x) = Go(m) + m(x —m). Thus
]EQ[(A}(SI(x)] > EQ[Go(x)], i.e.

E¥ [ | = BF [¢5) > BF [ + mE® (Vi — 7] > BF [0} ] (2.4

Note that (V;,&*) € A because Vg = V, so the left side of the inequality is attainable.

3. Applications

3.1. Hedging Contingent Without Underlying

We consider a situation where we sell a European put option on non-tradable asset Y with the
payoff D = (K — Yy )*. We are going to hedge it using tradable asset X with the strategy
maximising P(V; = D). Assume that the dynamics of two price processes are given by the
following equations

dXt = ﬂxxtdt + O-ththX, XO = Xp > 0,
dYt = Ilyytdt + O'YytthY, Yo =Y > 0, (31)

where we assume a correlation p between two Brownian motions WY and WX, ie. WY =

pWX 4+ /1 — p2W where W is a Brownian motion independent of WX. We assume that the
interest rate is equal to zero. For 0 < x < D we have

Go(z)
dP
= E¢ [ml{Dgx}

dP
X] - & [Lc—vayr<a |X]

1
= —Q [K —x < yp exp {,uyT + ay(pWI)v{ +V1—p2Wrp) — §J%T}‘X]

K—u 1
—Q [m < J L) < pyT + oy (pWi + /1 — p2Wr) — 50%‘3&]

o

{ln (KyTC) —puyT — apr:ff + %U%/T
oy 1 — p?

} _— 1n<Ky:x)—uyT—apr7¥+%a}2/T

oy /T(1 — p?)

> WT]X]
J

7

where @ denotes the cdf of the standard normal distribution. We describe the sketch of
numerical algorithm basing on a Monte Carlo approach:

SLASKI
PRZEGLAD
STATYSTYCZNY

Nr 22(28)



Przemystaw Klusik: Market Risk Modelling in the Solvency Il Regime... 36

SLASKI
) _ PRZEGLAD
1. Fixarealnumberm = 0andintegersN, > 0,Ny,, > 0. STATYSTYCZNY
2. Draw asample wy, ..., Wy, from the normal distribution with mean 0 and variance T. Nr 22(28)
) . 1K 2K Ny K . .
3. Foreveryi = 1,..., Ny find x from the set {O,N—,N—, ...,NL} maximising the expression
X X X

} o In (%) —uyT — oy pw; + %a%T
1—

oy\/T(1— p?)

—mx

1 2
exp {M—le + —'LL—§T
ox 20%

and denote it by x™®* (7).

4. The solution is as follows: for an initial capital equal to

maximal expected success factor is equal to

Yo

W; b oy/T(1—p?)

Different m would give a different initial capital and expected success factor.

1 Nw o In (M) —puyT — oy pw; + %O’%/T

Figure 2 shows the results of simulations for the European put option maturingattime T = 1 with
the strike K = 1. The price dynamics follows 3.1 with parameters uy = yuy = 0.1, oy = oy =
0.3, Yy = X, = 1. The diagram illustrates the dependence for different levels of p.

rho
0-6r o 0.699999
-%- 0.799999
0.5F ..m-- 0.899999
—-- 0.999999

o
~

Cost of hedging strategy
o o
N w

©
=

o
o

0.6 Of7 0:8 Of9 1.0
Probability of perfect hedge

Figure 2. The results of numerical simulations for the described algorithm

Source: own elaboration.
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One could verify that as expected if X almost mimics Y (i.e. p is almost 1), the hedging strategy
with X should be very close to the hedging strategy with Y if Y was tradable. The cost of the latter
is equal 0.119235 as the result of the standard Black-Scholes formula.

3.2. Applications: Solvency Il

Insurance companies often neglect market risk modelling during capital modelling in the case of
instruments dependent on both insurance and market risks. For instance, in the case of an equity-
linked portfolio, the stochastic nature of the instrument with respect to market risks (such as
stock prices) is frequently disregarded, with modelling efforts focused solely on typically
insurance-related risks.

This underscores the importance of our approach, which effectively addresses this issue. Our
solution provides a strategy to achieve the minimal probability of insolvency (in terms of Problem
2.1, we have ¢g: = 1g,543 and D represents all liabilities of the insurance company at time
T = 1). Alternatively, for a given probability (e.g., 0.995 as required by Solvency Il), it determines
the minimal capital required.

Unlike conventional practices that often yield non-optimal static (or nearly static) positions, our
solution provides the optimal strategy, which usually requires dynamic investment in underlying
assets, ensuring a more accurate and effective approach to risk management.
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Modelowanie ryzyka rynkowego w rezimie Solvency Il oraz zabezpieczanie opcji
bez uzycia instrumentu bazowego

Streszczenie: W artykule rozwinieto narzedzia matematyczne stuzgce do zabezpieczenia kwan-
tylowego na rynku niezupetnym. Metody te majg dwa gtéwne zastosowania. Po pierwsze, pozwalajg
obliczy¢ wymodg kapitatowy zgodnie z Solvency Il, gdy w firmie ubezpieczeniowej wystepujg ryzyka
rynkowe i nierynkowe. Pokazujemy, jak znalezé minimalny kapitat Vo, ktéry zapewnia
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ubezpieczycielowi roczng strategig hedgingowa spetniajgcg warunek E[1(y,>p;] = 0.995, gdzie
V1 oznacza wartos¢ aktywow przedsiebiorstwa po roku, a D jest wartoscig zobowigzan. Podejscie
uwzglednia jednoczesnie ryzyka rynkowe i pozarynkowe, dzieki czemu stanowi narzedzie do
wyznaczania wymogu kapitatowego SCR w ramach Solvency Il. Drugim zastosowaniem jest
skonstruowanie strategii zabezpieczajgcej dla instrumentu pochodnego bez handlu aktywem
bazowym, lecz z wykorzystaniem innego aktywa, ktérego dynamika jest skorelowana z dynamika
aktywa bazowego (lub w inny sposdb stochastycznie od niej zalezna). Artykut uogdlnia wyniki
uzyskane przez Klusika i Palmowskiego w 2011 roku.

Stowa kluczowe: zabezpieczenie kwantylowe, Solvency Il, modelowanie kapitatu, hedging opcji
na aktywo niehandlowalne
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