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Abstract: This study explores the suitability of the Thurstone model in preference studies through
empirical validation. While the Thurstone model has been widely utilised for establishing linear
orders among stimuli, its appropriateness has come under scrutiny. The research proposes
a novel empirical validation test to assess the model’s applicability, particularly concerning large
sample sizes. Findings suggest limitations in using the Thurstone model with extensive samples.
Consequently, the paper offers insights for researchers relying on this model for stimulus ranking
and provides guidelines for verifying its suitability. Moreover, it discusses alternative pathways
for addressing poor model fit, including incorporating different standard deviations and treating
the Thurstone method not as a definitive model but as a procedure for ordering objects.
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highlighting the advantages and challenges of each approach. Overall, this research contributes
to understanding the complexities of preference studies and provides valuable insights into
refining methodological approaches in this domain.

Nr 22(28)

Keywords: Thurstone model, preference studies, empirical validation, stimulus ranking

1. Introduction

The Thurstone model was first proposed in the early 20th century (Thurstone, 1927a, 1927b;
Thurstone & Chave, 1929; Thurstone & Jones, 1957) and has since been frequently utilised to
determine a linear order within a set of stimuli under investigation. In this approach, respondents
are asked to judge which pair of stimuli is more excellent, and the results are presented as
a matrix of frequencies. Achieving a linear order has found wide application in classical social
choice (De Borda, 1781), information retrieval (Dwork et al., 2001), and recommendation systems
(Baltrunas et al., 2010). Ranking methods and paired comparisons play a crucial role in measuring
preferences, attitudes, and values. Rank aggregation methods have also been extensively
employed in marketing and advertising research, as well as in applied psychology. In recent years,
rank aggregation methods have emerged as a vital tool for combining information from various
Internet search engines (Lin, 2010). Determining the order of a set of objects based on pairwise
comparisons is much simpler than the traditional ranking of the entire set of objects.

Moreover, the comparative format used in ranking and paired comparison tasks can significantly
mitigate the influence of uniform response biases typically associated with rating scales (Maydeu-
Olivares & Brown, 2010). Maydeu-Olivares and Bockenholt (2008) present a list of the top 10
reasons for using Thurstonian models. Notably, it is easy for respondents, inconsistencies can be
modelled, the validity of inferences can be tested and nested, and crossed-sampling structures
can be incorporated. For these reasons, the Thurstone model is frequently employed in practice.
The simplest form of the model assumes that each stimulus follows a normal distribution with
the same standard deviation and that all correlations among stimuli are equal. Then, the method
of least squares is applied to minimise the deviation of the inverse CDFs of observed frequencies,
and the estimated central positions of linearly ordered normal distributions:

Zij (F_l(a)ij) - (dj - di))z - min, (1)

where F1(wj) denotes the inverse cumulative distribution of the standard normal random
variable for frequency wj representing the fraction of respondents judging stimulus i as stronger
than j, while d’s are the positions of subsequent stimuli to be estimated.

In this manner, one obtains the actual position (mean values of normal distributions) of the
stimuli and can determine the actual probabilities of judging the stimulus with the greater
expected value as greater than the one with the smaller expected value. However, the normal
distribution has long tails, so these probabilities will not be one. Still, they will depend on the
distance between stimuli, given in units of standard deviation—the greater the distance, the
higher the probability that a randomly chosen respondent will judge the stimulus with the more
excellent expected value as being more outstanding.
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2. Testing the Thurstone Model

A test proposed by Mosteller (1951) to assess the Thurstone model as a whole is based on the
following quantity:
Tii(piy-wi)’
XZ — ]( O]_;_ ]) , (2)
ij
where w;; is the observed frequency and p;; is the probability based on the estimated spacing
between stimuli.

According to Mosteller (1951), the quantity 8 = ArcSinvw has a normal distribution with

. 821 . . - .
variance ¢? = - and is nearly independent of the true p (if 8 is measured in degrees). One can

switch to the random variable:

2 _ v (04-9y)°
X = 2L<] 821/n ’ (3)
with 6;; = ArcSin,/w;; and 9;; = ArcSin,/p;;,
which is known to be distributed according to x? with w degrees of freedom.

Thus, by comparing empirical frequencies with probabilities calculated under the assumption that
the null hypothesis — the Thurstone model — holds, one obtains the value of the test statistics,
which must be smaller than the critical value to uphold the null hypothesis.

Alternatively, one may test the individual distance between stimuli, not the model as a whole.
Suppose the distance between two stimuli, 4 and B (A4 < B), measured in units of the standard
deviation of the difference between these two normal random variables, is equal to d. In that
case, then the probability that a randomly chosen respondent will judge B as greater than A is
equal top = F(d), where F is the cumulative distribution function of a standard normal random
variable.

If n independent respondents are surveyed, the probability that some (m) of them will judge B as
greater than A can be described by binomial distribution B(n, p) or, if n is large enough, it can be

approximated by normal distribution N(np,w/p(l - p)) . What is the probability that the
empirical frequency will deviate from the real probability p more than §? Clearly:

Plw—p|>8)=1-Pp—-6<w<p+6)=2|1-F p(f_p) , (4)

n

with w = m/n.

If one were to test a few independent distances between stimuli simultaneously, the probabilities
would multiply.

3. The Necessary Pattern of Real Probabilities Within the Thurstone Model

Let us take a moment to consider the pattern of real probabilities, assuming that the Thurstone
model holds true. One of the advantages of real probabilities is the ability to arrange the matrix
of these values systematically. For example, the probabilities above the diagonal are greater or
equal to 0.5, increasing as one moves away from the diagonal in columns and rows (see Fig. 1).
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X — >0.5 > 0.5 >05 > 0.5
Y — > 0.5 > 0.5 > 0.5
Z — > 0.5 > 0.5
— > 0.5
% —

Figure 1. Schematic pattern of probabilities for the Thurstone model

Source: own elaboration.

This pattern arises from rearranging the stimuli in ascending order — the greater the separation
between stimuli (in both rows and columns), the greater the probability of correctly determining
which one is greater. It is important to note that this also guarantees that the order between any
two stimuli within the sequence obtained by the Thurstone method remains unaffected by the
subset of stimuli chosen from the entire set for comparison. In other words, ranking any two
stimuli remains independent of irrelevant alternatives [3].

Indeed, such an ordering is insufficient, as this pattern merely ensures that the stimuli are
arranged increasingly rather than circularly. Moreover, it does not guarantee a linear order
among them. Please refer to Fig. 2 for an illustration.

S1 S3 S3
S: | wy = 0.6 w31 =09
S5 1-—wyy | - w3, = 0.7
Sa 1— w3 l-ws, | -

S: S, S3

S| - F~1(w,,) = 0.253 F(ws,) = 1.282
S, 1-wyy | - F1(w3;) = 0.524
S3 1—ws R N

Figure 2. An example of an increasing but nonlinear order

Source: own elaboration.

While Fig. 2 displays a pattern of increasing frequencies (w31 > w,1 and w31 > w3,), it does not
adhere to the condition F~1(w3;) = F 1 (w33) + F"1(w,4) (as 0.253 + 0.524 # 1.282), which
would be expected if the observed data were linear. However, such discrepancies are not
immediately apparent and require mathematical computation to detect. In contrast, Fig. 3
illustrates a pattern where the discrepancy is instantly noticeable: the distance between 3 and 1
is smaller than the sum of the distances between 3 and 2, and 2 and 1. Since both F~*(w,,) and
F~1(w3,) alone are greater than F~1(w3;), the former two can not sum up to the latter.
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52 1-— wy; | 0 w3y = 0.9

53 1-— w31 1-— w3, |

Sl Sz 53

Y I— F~ Y (wy,) = 0.842 F~Y(w31) = 0.253

52 1-— w7 | T F_l((l)32) = 1.282

S3 1- w3 1-ws, | =

Figure 3. An example of nonlinear and non-increasing order

Source: own elaboration.

An even more pronounced violation of the linear Thurstone model is circularity. When we cannot
arrange values above the diagonal that are all greater than or equal to 0.5, it indicates the
presence of observed circularity within a group. Refer to Fig. 4 for an example.

S1 S, S3
R IR— wy, = 0.7 w31 = 0.35
S, 1-wy | —— w3z = 0.6
S3 1— w3 l-wz, | -

S: S, S3

S | e F~'(wz) = 0.524 F~(ws;) = —0.385
S, 1—wyy | F™'(w3z) = 0253
S3 1— w3 l-wz, |

Figure 4. An example of nonlinear and circular order

Source: own elaboration.

It is impossible to rearrange the data from Fig. 4, as it is impossible to obtain all frequencies above
the diagonal > 0.5. If we changed stimuli 1 and 3 (to obtain w3 =1 — w31 =1 —0.35=0.65
above the diagonal), we would lose the other two quantities above the diagonal, changing the
order and turning into values less than 0.5. This can be interpreted as circularity — the group as
a whole has the following preferences: S, > S; (as w1 = 0.7 < 0.5), 53 > S, (as w3, = 0.6 > 0.5),
but S5 < S; (as w31 = 0.35 < 0.5), which may be described as ‘group circularity.’

The order depicted in Fig. 1 pertains to theoretical probabilities. By estimating the distances
between stimuli based on the data, we can calculate theoretical probabilities that will
undoubtedly conform to the above pattern, as they derive from the estimated linear order among
stimuli. However, empirical frequencies can deviate, as they typically do not precisely match the
real probabilities. This raises the question: can we estimate how much these empirical
frequencies deviate from the pattern?

The limitation arises from the test — empirical frequencies cannot differ significantly from
theoretical probabilities, as doing so would lead to rejecting the null hypothesis that the
Thurstone model is true.
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4. Some Estimations

Let us begin by illustrating the probabilities for a single pair of stimuli. The probability that the
observed frequency will deviate from the real probability (assuming that the Thurstone model is
true) is expressed by equation (4) and graphically presented in Fig. 5 for § = 0.01, § = 0.02 and
p ranging from 0 to 1.

1 & 1
08 1 08 -
0,6 - 06 -
04 4/ 0,4
02 § 0.2
0 0
0
a)6=0.01 b) § = 0.01

Figure 5. The probability that the observed frequency will deviate from the real probability with more than
8, for different sets of observations

Source: own elaboration.

It is evident that these probabilities decrease rapidly with both the value of deviation and the
number of observations. Moreover, they would decrease even more rapidly if one were to test
the differences between multiple pairs of stimuli simultaneously, as the probabilities would
multiply. With a large sample size and assuming the Thurstone model holds true, the probability
that observed frequencies will deviate from real probabilities is low (typically a few percentage
points). For instance, considering three pairs of stimuliand n = 250, the probability that all three
frequencies will deviate more than 2pp is on the order of 0.53 = 0.125, and it decreases rapidly
as the number of pairs of stimuli increases (e.g. 0.5K(=1/2) ‘where k is the number of stimuli
and k(k — 1)/2 is the number of pairs.

Furthermore, one would anticipate that with increasing observations, there would be a greater
alignment of empirical frequencies with the pattern imposed by the Thurstone model. We will
now shift our focus to a test of the entire Thurstone model.

250
(4
’I
200 i
'4
(4
l"
(4
150 P
l”
I”'
100 > /
50 ==
———
0
3 8 13 18 23

alpha=0.1 ====- alpha=0.05

Figure 6. Critical values for k ranging from 3 to 25 for « = 0.1; 0.05

Source: own elaboration.
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Indeed, such an ordering is insufficient, as this pattern merely ensures that the stimuli are
arranged increasingly rather than circularly. Moreover, it does not guarantee a linear order
among them. Please refer to Fig. 2 for an illustration.

As both of those curves can be perfectly fitted by a polynomial of the second order:
y = 0.5015k? — 2.8358k + 3.8820,R? = 1 fora = 0.1
y = 0.5010k? — 3.1836k + 5.0253,R? = 1 for a = 0.05,

it turns out that for greater numbers of stimuli, the average squared deviation of empirical values
from the theoretical probabilities should not exceed el order not to reject the null hypothesis
that the Thurstone model is true:

52 < =, (8)

This means that for n = 100 the value is 0.0025, and for n = 250 the average squared deviation
is of the order of 0.001. If deviations were equal, a single deviation of the orders would yield 0.05
and 0.03, respectively.

More precise numerical values for « = 0.05 and @ = 0.1 for n = 250 are presented in Fig. 7.

0,06 0,035
0,05 0,03 S - :
o=
_y’-—-‘b 0’025 ”‘,/
0,04 = 7/
0,02 77
0,03 Il
0,015 /)
0,02 ,’/
0,01 4
{
0,01 0,005 I
0 0
0 10 20 30 0 10 20 30
..... alpha=0.1 ——— alpha=0.05 ====-=-alpha=0.1 e 3l pha=0.05

= = = approx 1/2Sqrt(n) = = =approx1/25art(n)

a) n=100 b) n =250

Figure 7. Average squared deviation for k ranging from 3 to 25 for n = 100 and n = 250, compared with the
highest estimation

Source: own elaboration.

The highest limit reaches a very low value of §2 = 0.01 forn = 1500, which is the number of
respondents available for the empirical studies. Thus, the allowed average deviations from the
necessary pattern are quite low.

As 4nY 6% = )(Z, for small values of k, k = 3,4,5, we can also estimate the maximum deviation,
assuming that Y, 62 consists of one single deviation, which would thus be limited to the values
tabularised in Tab. 1.
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Table 1. Critical values and subsequent maximum values of §

k a x2 n =100 n =250 n = 1000
3 0.05 0.0039 0.0031 0.0020 0.0010
0.10 0.0158 0.0063 0.0040 0.0020
4 0.05 0.3518 0.0297 0.0188 0.0094
0.10 0.5844 0.0382 0.0242 0.0121
5 0.05 1.6354 0.0639 0.0404 0.0202
0.10 2.2041 0.0742 0.0469 0.0235

Source: own elaboration.

A k .
For larger values of k, we can employ the approximation §,,,,x = —; however, this may be less

van'’
meaningful, as comparing many pairs makes it less likely that all deviations will be limited to only
. . k2
one of these pairs. It is preferable to state that Y, 62 ~ P

Consequently, we can infer the following:

1. Some characteristics of the ordering of real probabilities can be easily discerned without any
calculations.

2. The permissible deviations of the observed frequencies from the real probabilities are
relatively small (for the number of observations typically encountered in survey research) and
can be readily estimated.

3. What can be deduced from points 1) and 2) is that if the observed data deviate too
significantly from the required order (which can be quantified), there is little chance that they
will pass the test after fitting to the Thurstone model.

5. Examples

Let us apply the above observations to some examples. Some were created for the sake of this
paper, and some were taken from previously published papers.

Example 1

The data presented in Fig. 3 violate the necessary order of increasing values both in rows and
columns. The slightest possible intervention that could rectify this inconsistency is increasing ws4
to 0.9. This would create a deviation of 0.3. However, from the estimated orders of allowed
deviations mentioned earlier, it is evident that this data will not fit the Thurstone model with
sufficient accuracy to pass the test. The estimated value of the maximum allowed deviation for
k = 3 is much smaller than 0.01 regardless of the number of observations (this holds true even
for a very small number of observations, such as 10) and the level of significance. It is worth noting
that our measurement of the deviation as 0.3 is only an estimation. In reality, the deviations will
be distributed among three values. After fitting to the Thurstone model, it’s revealed that the real

VY 62%is equal to 0.3371.

Example 2

The data presented in Fig. 4 also violates the necessary order of increasing values both in rows
and columns. The slightest possible intervention that would rectify this inconsistency is increasing
w31 to 0.7, resulting in a deviation of 0.35. Again, the estimated value of the maximum allowed
deviation for k = 3 is much smaller than 0.01 regardless of the number of observations and the
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level of significance. After fitting to the Thurstone model, it’s discovered that the real /Y. §2 is
equal to 0.2599.

It’s noteworthy that even if we focused solely on w3, being less than 0.5, the minimum
intervention to rectify it would be to increase it by 0.15, which still exceeds the allowed maximum
deviation.

Example 3

Let us investigate the original example used by Thurstone himself, as presented in his seminal
paper (1929). The empirical frequencies were based on the answers of 266 respondents.
According to our estimation, the maximum allowed Y 62, that would not reject the null

%9:6 = 0.17. In Appendix A, we have presented some rough estimations of
violations of the necessary order of the probabilities, and the sum of their squares is equal to 0.25,
which is almost 1.5 times more than that ‘allowed.’ It is essential to note that these are very
conservative estimations, as the necessary order is evidently insufficient for the linear Thurstone
order to hold. Furthermore, the value of the empirical test statistics estimated with Y, 62 is only
a lower bound of the real value, as we do not take into account the higher powers of deviations.
Indeed, when we run the Thurstone model on the given data, the actual Y, 62 is equal to 0.44,
resulting in the value §2 = 463 (with a critical value equal to 131 for @ = 0.1). The exact value
of test statistics, without omitting higher-order terms, is equal to y2 = 742, indicating that the
hypothesis of the Thurstone linear model must be rejected. However, one does not need to
perform all those calculations, as the same conclusion can be reached from a very rough
assessment of the proper ordering of the empirical data. While the estimations presented in
Appendix A are more detailed for presentation purposes, with experience, one can quickly
suspect that the data may not fit well to the linear Thurstone model in its simplest version.

hypothesis is

Drawing from this experience, we evaluated a few more examples found in the literature and
confirmed our expectations with rigorous calculations. These examples reinforce our intuition: if
the data is based on a sufficiently high number of observations, forn > 100, the order among
them should be very pronounced and of high quality to avoid rejecting the null hypothesis that
the model is true after fitting to the Thurstone model.

Thurstone (1929): n = 266, critical value for @ = 0.1 y? = 131, empirical value y2 = 742, null

hypothesis rejected;

Kwan et al. (2000): n = 200, critical value for @ = 0.1 y2 = 74.2, empirical value y2 = 1321.82,
null hypothesis rejected;

Krabbe (2008): n = 212, critical value for @ = 0.1 y2 = 131.0, empirical value y2 = 1711.9, null
hypothesis rejected;

Debicka et al. (2022): n = 219, critical value for @ = 0.1 y2 = 25.64, empirical value y2 =
226.93, null hypothesis rejected;

Mosteller (1951): n = 22, critical value for ¢ = 0.1 yz = 13.24, empirical value )(3 = 14.76, null
hypothesis nearly accepted (it would be accepted at « = 0.17).

The only example in which the null hypothesis was not rejected was for small sample size, n =
22. These examples support the assertion that with survey studies (larger sample sizes), obtaining
empirical frequencies that are so neatly ordered is highly improbable that the null hypothesis will
not be rejected after fitting into the Thurstone model. Conversely, if the frequencies were indeed
ordered, the model would not need to be applied, as one could deduce the distances between
the stimuli using only one row/column of the data with outstanding accuracy.
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6. Discussion and Conclusions

From the estimations presented in the previous section, it becomes apparent that in many
situations, especially when the data is based on a large number of observations, it quickly
becomes evident that such data cannot be fitted to the Thurstone model with sufficient accuracy
to avoid rejecting the hypothesis of the Thurstone model. In such cases, what could be the
solution?

There are three possible pathways to consider. The first is to conclude outright that the Thurstone
model is unsuitable and choose another tool to analyse the given data. Another potential solution
is to allow for more flexibility in the model, notably by permitting different standard deviations.

The possibility of different standard deviations has been discussed since the inception of the
Thurstone model. Initially, it was only possible to make estimations based on particular
assumptions about which standard deviation to allow to be different from the rest. However, with
the computational power available today, it is feasible to numerically minimise the differences
between theoretical and empirical frequencies (as well as between theoretical and empirical
spacings) and determine which standard deviations best fit the Thurstone model. While this
approach may yield much lower values of y2 The status of this process is not entirely clear
compared to those obtained by the standard Thurstone procedure. Is it still the Thurstone model,
which was based on specific theoretical considerations about the nature of the compared stimuli?
It is essential to note that if additional degrees of freedom are introduced, such as allowing the
distance between each pair of stimuli to vary independently, it may result in a 100% fit of the
‘model’ (if it can still be named this way). However, outcomes would be ambiguous, with none
highlighted as correct. Therefore, while the computational capabilities of computers are
undoubtedly advantageous, one must be cautious not to overuse them.

The third possible pathway to addressing the problem of poor fit of the data to the Thurstone
model is not treating it as a model that can be true or false but rather as a procedure used to
impose linear order on data that are not necessarily linear by nature. Linear order acquisition,
such as during elections or voting for civil projects, is inherently challenging despite the potential
for inconsistencies and circularity in both individual and grouped preferences. Each system of
obtaining such linear ordering may not be foolproof, and ongoing discussions persist regarding
the best voting system, with different countries adopting different solutions.

If we consider the Thurstone method as one possible procedure for ordering objects, it can be
compared with other methods, such as the average rank method. The average rank method is
the simplest and most common, but it has limitations. It is oversimplified and does not account
for possible differences in spacings between objects ranked by a single respondent as 1 and 2, 2
and 3, and so on. However, it could be justified if we impose certain assumptions on the
distribution of spacings, even though these assumptions could be questioned. Additionally, the
Thurstone assumption itself is also questionable, as in most situations, the data do not pass the
test. The main difference between the Thurstone method and the average rank method lies in
linearity. In the average rank method, the difference between 0.9 and 0.8 and between 0.3 and
0.2 (in the percentage of respondents who preferred one stimulus over another) refers to the
same spacing. However, in the Thurstone model, the former has much greater dominance than
the latter. This discrepancy arises from the non-linearity of normal distributions and poses
challenges, especially in cases of 0 or 1 frequency, which can lead to infinite spacings in the
standard Thurstone procedure. Although this particular problem can be addressed with ad hoc
solutions, such as omitting these inputs from the minimised expressions, it prompts the question:
what are the real advantages of the Thurstone procedure over the simple average rank method,
especially in cases where the null hypothesis is rejected?
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Model Thurstone'a: analiza danych ankietowych i ranking bodzcow — model czy
procedura?

Streszczenie: Niniejsza praca bada przydatnos¢ modelu Thurstone'a w badaniach preferencji.
Adekwatnos¢ modelu Thurstone'a szeroko wykorzystywanego do ustalania liniowych porzadkéw
miedzy bodZcami zostata poddana empirycznej walidacji. W badaniu zaproponowano nowatorski
test walidacji empirycznej w celu oceny stosowalnosci modelu, w szczegdlnosci w odniesieniu do
duzych préb. Wyniki sugerujg ograniczenia w stosowaniu modelu Thurstone'a na duzych prébach.
W zwigzku z tym artykut zawiera spostrzezenia dla badaczy wykorzystujgcych ten model w celu
uszeregowania bodzcéw i wytyczne dotyczace weryfikacji jego przydatnosci. Ponadto oméwiono
alternatywne sposoby radzenia sobie ze stabym dopasowaniem modelu, w tym uwzglednianie
roznych odchylen standardowych i traktowanie metody Thurstone'a nie jako ostatecznego
modelu, ale jako procedury porzgdkowania obiektéw. Dodatkowo badanie poréwnuje metode
Thurstone'a z metodg Sredniej rangi, podkreslajgc zalety i wyzwania kazdego podejscia. Badanie
to przyczynia sie do zrozumienia ztozonosci badan preferencji i zapewnia cenny wglad
w udoskonalanie podejs¢ metodologicznych w tej dziedzinie.

Stowa kluczowe: model Thurstone'a, badania preferencji, walidacja empiryczna, ranking bodzcéw
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Appendix

Best ordering of frequencies from (Thurstone, 1929). In bold — deviations in columns underlined,
and in italics — deviations in rows

p19 pl6 p5 p18 pi3 p12 p4 p6 p9 p7 p8 pl4 p3 p2 p11 pl p17 p10 pi5

p19 0939 0884 0963 0933 0947 0928 0973 095 0958 0951 0985 0981 0966 0974 0955 0977 0989 0985
pl6 0473 0525 047 0732 065 0779 0805 0801 0859 0,796 08 0857 0902 0857 0875 0973 0981
p5 0576 0506 0678 0621 0764 075 0745 0738 0,728 0864 0828 0924 0872 0871 0955 0,985
p18 0,544 0635 0654 0,716 074 0,785 0749 0778 08 079 0914 082 0879 0974 0977
p13 0,652 0615 0,678 0,68 0,716 0,752 0,702 0,855 0,818 0894 0,809 0,886 0,966 0,981
p12 0615 0667 0657 0697 0695 0648 0,785 0,793 08 0778 0848 0,97 0,97
p4 0515 0534 0556 0485 0587 074 0757 0743 0789 0,785 097 0947
p6 058 0593 0605 0478 0,774 0719 085 0762 0769 0,981 0981
p9 0512 065 0534 0746 0726 0819 0788 08 0951 0966
p7 054 0533 0679 0715 0804 0756 0,756 0,947 0,963
p8 0474 0652 0,747 0752 0755 0,774 0958 0,977
pl4 0651 0755 0712 0744 0767 0921 0951
p3 0585 0563 0662 0716 0917 0944
p2 0365 0,677 0589 0863 0925
pl1 0,682 0595 0917 0902
pl 0,419 076 0822
p17 0819 0924
p10 0,441

Estimated deviations in columns (with the accuracy up to centesimal parts)

0,03 0,05 0,03 0,02 0,03 0,05 0,04 0,01 0,05 0,02 0,02 0,02 0,02 0,01 0,02 0,01
0,04 0,04 0,12 0,03 0,03 0,01 0,09 0,01 0,05 0,01 0,02

0,03 0,02 0,02 0,02 0,01 0,01

0,04 0,14 0,01 0,01 0,05 01

0,01 0,08 0,05 0,06

Estimated deviations in rows (with the accuracy up to centesimal parts)

0,03 0,05 0,03 0,02 0,03 0,05 0,04 0,01 0,05 0,02 0,02 0,02 0,02 0,01 0,02 0,01
0,04 0,04 0,12 0,03 0,03 0,01 0,09 0,01 0,05 0,01 0,02

0,03 0,02 0,02 0,02 0,01 0,01

0,04 0,14 0,01 0,01 0,05 0,1
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