
 

Ś L Ą S K I  P R Z E G L Ą D  S T A T Y ST Y C Z N Y 
S i l e s i a n  S t a t i s t i c a l  R e v i e w  
2024, nr 22(28)   ISSN 2449-9765 
 

DOI: 10.15611/sps.2024.22.06 

Thurstone Model: Analysing Survey Data and Ranking Stimuli – 
Model or Procedure? 

Katarzyna Ostasiewicz 
Wroclaw University of Economics and Business 

e-mail: katarzyna.ostasiewicz@ue.wroc.pl  

ORCID: 0000-0002-0115-3696 

Joanna Dębicka 
Wroclaw University of Economics and Business 

e-mail: joanna.debicka@ue.wroc.pl  

ORCID: 0000-0002-8905-2565 

Edyta Mazurek 
Wroclaw University of Economics and Business 

e-mail: edyta.mazurek@ue.wroc.pl  

ORCID: 0000-0001-7410-1638 

©2024 Katarzyna Ostasiewicz, Joanna Dębicka, Edyta Mazurek 

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ 

Quote as: Ostasiewicz, K., Dębicka, J., & Mazurek, E. (2024). Thurstone Model: Analysing Survey 
Data and Ranking Stimuli – Model or Procedure? Silesian Statistical Review, 22(28), 50-61. 

JEL: C10, C44, D01 

Abstract: This study explores the suitability of the Thurstone model in preference studies through 
empirical validation. While the Thurstone model has been widely utilised for establishing linear 
orders among stimuli, its appropriateness has come under scrutiny. The research proposes  
a novel empirical validation test to assess the model’s applicability, particularly concerning large 
sample sizes. Findings suggest limitations in using the Thurstone model with extensive samples. 
Consequently, the paper offers insights for researchers relying on this model for stimulus ranking 
and provides guidelines for verifying its suitability. Moreover, it discusses alternative pathways 
for addressing poor model fit, including incorporating different standard deviations and treating 
the Thurstone method not as a definitive model but as a procedure for ordering objects. 

https://doi.org/10.15611/sps.2024.22.06
mailto:katarzyna.ostasiewicz@ue.wroc.pl
https://orcid.org/0000-0002-0115-3696
mailto:joanna.debicka@ue.wroc.pl
https://orcid.org/0000-0002-8905-2565
mailto:edyta.mazurek@ue.wroc.pl
https://orcid.org/0000-0001-7410-1638
http://creativecommons.org/licenses/by-sa/4.0/


Katarzyna Ostasiewicz, Joanna Dębicka, Edyta Mazurek: Thurstone Model: Analysing Survey Data… 51 
ŚLĄSKI 
PRZEGLĄD 
STATYSTYCZNY 

Nr 22(28) 

Additionally, the study compares the Thurstone method with the average rank method, 
highlighting the advantages and challenges of each approach. Overall, this research contributes 
to understanding the complexities of preference studies and provides valuable insights into 
refining methodological approaches in this domain. 

Keywords: Thurstone model, preference studies, empirical validation, stimulus ranking 

1. Introduction 

The Thurstone model was first proposed in the early 20th century (Thurstone, 1927a, 1927b; 
Thurstone & Chave, 1929; Thurstone & Jones, 1957) and has since been frequently utilised to 
determine a linear order within a set of stimuli under investigation. In this approach, respondents 
are asked to judge which pair of stimuli is more excellent, and the results are presented as 
a matrix of frequencies. Achieving a linear order has found wide application in classical social 
choice (De Borda, 1781), information retrieval (Dwork et al., 2001), and recommendation systems 
(Baltrunas et al., 2010). Ranking methods and paired comparisons play a crucial role in measuring 
preferences, attitudes, and values. Rank aggregation methods have also been extensively 
employed in marketing and advertising research, as well as in applied psychology. In recent years, 
rank aggregation methods have emerged as a vital tool for combining information from various 
Internet search engines (Lin, 2010). Determining the order of a set of objects based on pairwise 
comparisons is much simpler than the traditional ranking of the entire set of objects.  

Moreover, the comparative format used in ranking and paired comparison tasks can significantly 
mitigate the influence of uniform response biases typically associated with rating scales (Maydeu-
Olivares & Brown, 2010). Maydeu-Olivares and Böckenholt (2008) present a list of the top 10 
reasons for using Thurstonian models. Notably, it is easy for respondents, inconsistencies can be 
modelled, the validity of inferences can be tested and nested, and crossed-sampling structures 
can be incorporated. For these reasons, the Thurstone model is frequently employed in practice. 
The simplest form of the model assumes that each stimulus follows a normal distribution with 
the same standard deviation and that all correlations among stimuli are equal. Then, the method 
of least squares is applied to minimise the deviation of the inverse CDFs of observed frequencies, 
and the estimated central positions of linearly ordered normal distributions: 

 ∑ �𝐹𝐹−1�𝜔𝜔𝑖𝑖𝑖𝑖� − �𝑑𝑑𝑗𝑗 − 𝑑𝑑𝑖𝑖��
2

𝑖𝑖𝑖𝑖 → min, (1) 

where F–1(ωij) denotes the inverse cumulative distribution of the standard normal random 
variable for frequency ωij representing the fraction of respondents judging stimulus i as stronger 
than j, while d’s are the positions of subsequent stimuli to be estimated. 

In this manner, one obtains the actual position (mean values of normal distributions) of the 
stimuli and can determine the actual probabilities of judging the stimulus with the greater 
expected value as greater than the one with the smaller expected value. However, the normal 
distribution has long tails, so these probabilities will not be one. Still, they will depend on the 
distance between stimuli, given in units of standard deviation—the greater the distance, the 
higher the probability that a randomly chosen respondent will judge the stimulus with the more 
excellent expected value as being more outstanding. 
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2. Testing the Thurstone Model 

A test proposed by Mosteller (1951) to assess the Thurstone model as a whole is based on the 
following quantity: 

 𝜒𝜒2 =
∑ �𝑝𝑝𝑖𝑖𝑖𝑖−𝜔𝜔𝑖𝑖𝑖𝑖�

2
𝑖𝑖𝑖𝑖

𝜎𝜎𝑖𝑖𝑖𝑖
2 ,  (2) 

where 𝜔𝜔𝑖𝑖𝑖𝑖 is the observed frequency and 𝑝𝑝𝑖𝑖𝑖𝑖  is the probability based on the estimated spacing 
between stimuli. 

According to Mosteller (1951), the quantity θ = ArcSin√ω  has a normal distribution with 
variance 𝜎𝜎2 = 821

𝑛𝑛
 and is nearly independent of the true 𝑝𝑝 (if 𝜃𝜃 is measured in degrees). One can 

switch to the random variable: 

 𝜒𝜒2 = ∑ �𝜃𝜃𝑖𝑖𝑖𝑖−𝜗𝜗𝑖𝑖𝑖𝑖�
2

821 𝑛𝑛⁄𝑖𝑖<𝑗𝑗 ,  (3) 

with 𝜃𝜃𝑖𝑖𝑖𝑖 = ArcSin�𝜔𝜔𝑖𝑖𝑖𝑖 and 𝜗𝜗𝑖𝑖𝑖𝑖 = ArcSin�𝑝𝑝𝑖𝑖𝑖𝑖,  

which is known to be distributed according to χ2 with (𝑘𝑘−1)(𝑘𝑘−2)
2

 degrees of freedom. 

Thus, by comparing empirical frequencies with probabilities calculated under the assumption that 
the null hypothesis – the Thurstone model – holds, one obtains the value of the test statistics, 
which must be smaller than the critical value to uphold the null hypothesis. 

Alternatively, one may test the individual distance between stimuli, not the model as a whole. 
Suppose the distance between two stimuli, A and B (A ˂ B ), measured in units of the standard 
deviation of the difference between these two normal random variables, is equal to 𝑑𝑑. In that 
case, then the probability that a randomly chosen respondent will judge B as greater than A is 
equal to 𝑝𝑝 = 𝐹𝐹(𝑑𝑑), where 𝐹𝐹 is the cumulative distribution function of a standard normal random 
variable. 

If 𝑛𝑛 independent respondents are surveyed, the probability that some (𝑚𝑚) of them will judge B as 
greater than A can be described by binomial distribution 𝐵𝐵(𝑛𝑛, 𝑝𝑝) or, if 𝑛𝑛 is large enough, it can be 
approximated by normal distribution 𝑁𝑁�𝑛𝑛𝑛𝑛, �𝑝𝑝(1 − 𝑝𝑝)� . What is the probability that the 
empirical frequency will deviate from the real probability 𝑝𝑝 more than 𝛿𝛿? Clearly: 

 𝑃𝑃(|𝜔𝜔 − 𝑝𝑝| > 𝛿𝛿) = 1 − 𝑃𝑃(𝑝𝑝 − 𝛿𝛿 < 𝜔𝜔 < 𝑝𝑝 + 𝛿𝛿) = 2 �1 − 𝐹𝐹 � 𝛿𝛿

�𝑝𝑝(1−𝑝𝑝)
𝑛𝑛

��,  (4) 

with 𝜔𝜔 = 𝑚𝑚 𝑛𝑛⁄ . 

If one were to test a few independent distances between stimuli simultaneously, the probabilities 
would multiply. 

3. The Necessary Pattern of Real Probabilities Within the Thurstone Model 

Let us take a moment to consider the pattern of real probabilities, assuming that the Thurstone 
model holds true. One of the advantages of real probabilities is the ability to arrange the matrix 
of these values systematically. For example, the probabilities above the diagonal are greater or 
equal to 0.5, increasing as one moves away from the diagonal in columns and rows (see Fig. 1).  
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Figure 1. Schematic pattern of probabilities for the Thurstone model 

Source: own elaboration. 

This pattern arises from rearranging the stimuli in ascending order – the greater the separation 
between stimuli (in both rows and columns), the greater the probability of correctly determining 
which one is greater. It is important to note that this also guarantees that the order between any 
two stimuli within the sequence obtained by the Thurstone method remains unaffected by the 
subset of stimuli chosen from the entire set for comparison. In other words, ranking any two 
stimuli remains independent of irrelevant alternatives [3]. 

Indeed, such an ordering is insufficient, as this pattern merely ensures that the stimuli are 
arranged increasingly rather than circularly. Moreover, it does not guarantee a linear order 
among them. Please refer to Fig. 2 for an illustration. 

 
Figure 2. An example of an increasing but nonlinear order 

Source: own elaboration. 

While Fig. 2 displays a pattern of increasing frequencies (𝜔𝜔31 > 𝜔𝜔21 and 𝜔𝜔31 > 𝜔𝜔32), it does not 
adhere to the condition 𝐹𝐹−1(𝜔𝜔31) = 𝐹𝐹−1(𝜔𝜔32) + 𝐹𝐹−1(𝜔𝜔21) (as 0.253 + 0.524 ≠ 1.282), which 
would be expected if the observed data were linear. However, such discrepancies are not 
immediately apparent and require mathematical computation to detect. In contrast, Fig. 3 
illustrates a pattern where the discrepancy is instantly noticeable: the distance between 3 and 1 
is smaller than the sum of the distances between 3 and 2, and 2 and 1. Since both 𝐹𝐹−1(𝜔𝜔21) and 
𝐹𝐹−1(𝜔𝜔32) alone are greater than 𝐹𝐹−1(𝜔𝜔31), the former two can not sum up to the latter. 

 𝑆𝑆1 𝑆𝑆2 𝑆𝑆3 

𝑆𝑆1 ------- 𝜔𝜔21 = 0.6 𝜔𝜔31 = 0.9 

𝑆𝑆2 1 − 𝜔𝜔21 ------ 𝜔𝜔32 = 0.7 

𝑆𝑆3 1 − 𝜔𝜔31 1 − 𝜔𝜔32 ------ 
 

 𝑆𝑆1 𝑆𝑆2 𝑆𝑆3 

𝑆𝑆1 ------- 𝐹𝐹−1(𝜔𝜔21) = 0.253 𝐹𝐹−1(𝜔𝜔31) = 1.282 

𝑆𝑆2 1 − 𝜔𝜔21 ------ 𝐹𝐹−1(𝜔𝜔32) = 0.524 

𝑆𝑆3 1 − 𝜔𝜔31 1 − 𝜔𝜔32 ------ 
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Figure 3. An example of nonlinear and non-increasing order 

Source: own elaboration. 

An even more pronounced violation of the linear Thurstone model is circularity. When we cannot 
arrange values above the diagonal that are all greater than or equal to 0.5, it indicates the 
presence of observed circularity within a group. Refer to Fig. 4 for an example. 

 
Figure 4. An example of nonlinear and circular order 

Source: own elaboration. 

It is impossible to rearrange the data from Fig. 4, as it is impossible to obtain all frequencies above 
the diagonal ≥ 0.5. If we changed stimuli 1 and 3 (to obtain 𝜔𝜔13 = 1 − 𝜔𝜔31 = 1 − 0.35 = 0.65 
above the diagonal), we would lose the other two quantities above the diagonal, changing the 
order and turning into values less than 0.5. This can be interpreted as circularity – the group as 
a whole has the following preferences: 𝑆𝑆2 > 𝑆𝑆1 (as 𝜔𝜔21 = 0.7 < 0.5), 𝑆𝑆3 > 𝑆𝑆2 (as 𝜔𝜔32 = 0.6 > 0.5), 
but 𝑆𝑆3 < 𝑆𝑆1 (as 𝜔𝜔31 = 0.35 < 0.5), which may be described as ‘group circularity.’ 

The order depicted in Fig. 1 pertains to theoretical probabilities. By estimating the distances 
between stimuli based on the data, we can calculate theoretical probabilities that will 
undoubtedly conform to the above pattern, as they derive from the estimated linear order among 
stimuli. However, empirical frequencies can deviate, as they typically do not precisely match the 
real probabilities. This raises the question: can we estimate how much these empirical 
frequencies deviate from the pattern? 

The limitation arises from the test – empirical frequencies cannot differ significantly from 
theoretical probabilities, as doing so would lead to rejecting the null hypothesis that the 
Thurstone model is true. 

 𝑆𝑆1 𝑆𝑆2 𝑆𝑆3 

𝑆𝑆1 ------- 𝜔𝜔21 = 0.8 𝜔𝜔31 = 0.6 

𝑆𝑆2 1 − 𝜔𝜔21 ------ 𝜔𝜔32 = 0.9 

𝑆𝑆3 1 − 𝜔𝜔31 1 − 𝜔𝜔32 ------ 
  

 𝑆𝑆1 𝑆𝑆2 𝑆𝑆3 

𝑆𝑆1 ------- 𝐹𝐹−1(𝜔𝜔21) = 0.842 𝐹𝐹−1(𝜔𝜔31) = 0.253 

𝑆𝑆2 1 − 𝜔𝜔21 ------ 𝐹𝐹−1(𝜔𝜔32) = 1.282 

𝑆𝑆3 1 − 𝜔𝜔31 1 − 𝜔𝜔32 ------ 
 

 𝑆𝑆1 𝑆𝑆2 𝑆𝑆3 

𝑆𝑆1 ------- 𝜔𝜔21 = 0.7 𝜔𝜔31 = 0.35 

𝑆𝑆2 1 − 𝜔𝜔21 ------ 𝜔𝜔32 = 0.6 

𝑆𝑆3 1 − 𝜔𝜔31 1 − 𝜔𝜔32 ------ 
  

 𝑆𝑆1 𝑆𝑆2 𝑆𝑆3 

𝑆𝑆1 ------- 𝐹𝐹−1(𝜔𝜔21) = 0.524 𝐹𝐹−1(𝜔𝜔31) = −0.385 

𝑆𝑆2 1 − 𝜔𝜔21 ------ 𝐹𝐹−1(𝜔𝜔32) = 0.253 

𝑆𝑆3 1 − 𝜔𝜔31 1 − 𝜔𝜔32 ------ 
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4. Some Estimations 

Let us begin by illustrating the probabilities for a single pair of stimuli. The probability that the 
observed frequency will deviate from the real probability (assuming that the Thurstone model is 
true) is expressed by equation (4) and graphically presented in Fig. 5 for 𝛿𝛿 = 0.01, 𝛿𝛿 = 0.02 and 
𝑝𝑝 ranging from 0 to 1. 

 
Figure 5. The probability that the observed frequency will deviate from the real probability with more than 
𝛿𝛿, for different sets of observations 
Source: own elaboration. 

It is evident that these probabilities decrease rapidly with both the value of deviation and the 
number of observations. Moreover, they would decrease even more rapidly if one were to test 
the differences between multiple pairs of stimuli simultaneously, as the probabilities would 
multiply. With a large sample size and assuming the Thurstone model holds true, the probability 
that observed frequencies will deviate from real probabilities is low (typically a few percentage 
points). For instance, considering three pairs of stimuli and 𝑛𝑛 = 250, the probability that all three 
frequencies will deviate more than 2pp is on the order of 0.53 = 0.125, and it decreases rapidly 
as the number of pairs of stimuli increases (e.g. 0.5𝑘𝑘(𝑘𝑘−1) 2⁄ ), where 𝑘𝑘 is the number of stimuli 
and 𝑘𝑘(𝑘𝑘 − 1) 2⁄  is the number of pairs. 
Furthermore, one would anticipate that with increasing observations, there would be a greater 
alignment of empirical frequencies with the pattern imposed by the Thurstone model. We will 
now shift our focus to a test of the entire Thurstone model. 

 
Figure 6. Critical values for k ranging from 3 to 25 for 𝛼𝛼 = 0.1; 0.05 

Source: own elaboration. 
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Indeed, such an ordering is insufficient, as this pattern merely ensures that the stimuli are 
arranged increasingly rather than circularly. Moreover, it does not guarantee a linear order 
among them. Please refer to Fig. 2 for an illustration. 

As both of those curves can be perfectly fitted by a polynomial of the second order: 

𝑦𝑦 = 0.5015𝑘𝑘2 − 2.8358𝑘𝑘 + 3.8820, 𝑅𝑅2 = 1 for 𝛼𝛼 = 0.1 

𝑦𝑦 = 0.5010𝑘𝑘2 − 3.1836𝑘𝑘 + 5.0253, 𝑅𝑅2 = 1 for 𝛼𝛼 = 0.05, 

it turns out that for greater numbers of stimuli, the average squared deviation of empirical values 
from the theoretical probabilities should not exceed 1

4𝑛𝑛
 in order not to reject the null hypothesis 

that the Thurstone model is true: 

 𝛿𝛿2��� < 1
4𝑛𝑛

.  (8) 

This means that for 𝑛𝑛 = 100 the value is 0.0025, and for 𝑛𝑛 = 250 the average squared deviation 
is of the order of 0.001. If deviations were equal, a single deviation of the orders would yield 0.05 
and 0.03, respectively. 

More precise numerical values for 𝛼𝛼 = 0.05 and 𝛼𝛼 = 0.1 for 𝑛𝑛 = 250 are presented in Fig. 7. 

  
a) n = 100  b) n = 250 

Figure 7. Average squared deviation for k ranging from 3 to 25 for n = 100 and n = 250, compared with the 
highest estimation 

Source: own elaboration. 

The highest limit reaches a very low value of 𝛿𝛿2��� = 0.01 for 𝑛𝑛 ≈ 1500, which is the number of 
respondents available for the empirical studies. Thus, the allowed average deviations from the 
necessary pattern are quite low. 

As 4𝑛𝑛 ∑ 𝛿𝛿2 = 𝜒𝜒𝑐𝑐
2, for small values of 𝑘𝑘, 𝑘𝑘 = 3,4,5, we can also estimate the maximum deviation, 

assuming that ∑ 𝛿𝛿2 consists of one single deviation, which would thus be limited to the values 
tabularised in Tab. 1. 
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Table 1. Critical values and subsequent maximum values of 𝛿𝛿 

k 𝛼𝛼 𝜒𝜒𝑐𝑐
2 𝑛𝑛 = 100 𝑛𝑛 = 250 𝑛𝑛 = 1000 

3 0.05 0.0039 0.0031 0.0020 0.0010 

0.10 0.0158 0.0063 0.0040 0.0020 
4 0.05 0.3518 0.0297 0.0188 0.0094 

0.10 0.5844 0.0382 0.0242 0.0121 
5 0.05 1.6354 0.0639 0.0404 0.0202 

0.10 2.2041 0.0742 0.0469 0.0235 

Source: own elaboration. 

For larger values of k, we can employ the approximation 𝛿𝛿max = 𝑘𝑘
√8𝑛𝑛

; however, this may be less 
meaningful, as comparing many pairs makes it less likely that all deviations will be limited to only 

one of these pairs. It is preferable to state that ∑ 𝛿𝛿2 ≈ 𝑘𝑘2

8𝑛𝑛
. 

Consequently, we can infer the following: 

1. Some characteristics of the ordering of real probabilities can be easily discerned without any 
calculations. 

2. The permissible deviations of the observed frequencies from the real probabilities are 
relatively small (for the number of observations typically encountered in survey research) and 
can be readily estimated. 

3. What can be deduced from points 1) and 2) is that if the observed data deviate too 
significantly from the required order (which can be quantified), there is little chance that they 
will pass the test after fitting to the Thurstone model. 

5. Examples 

Let us apply the above observations to some examples. Some were created for the sake of this 
paper, and some were taken from previously published papers. 

Example 1 

The data presented in Fig. 3 violate the necessary order of increasing values both in rows and 
columns. The slightest possible intervention that could rectify this inconsistency is increasing 𝜔𝜔31 
to 0.9. This would create a deviation of 0.3. However, from the estimated orders of allowed 
deviations mentioned earlier, it is evident that this data will not fit the Thurstone model with 
sufficient accuracy to pass the test. The estimated value of the maximum allowed deviation for 
𝑘𝑘 = 3 is much smaller than 0.01 regardless of the number of observations (this holds true even 
for a very small number of observations, such as 10) and the level of significance. It is worth noting 
that our measurement of the deviation as 0.3 is only an estimation. In reality, the deviations will 
be distributed among three values. After fitting to the Thurstone model, it’s revealed that the real 
�∑ 𝛿𝛿2 is equal to 0.3371. 

Example 2 

The data presented in Fig. 4 also violates the necessary order of increasing values both in rows 
and columns. The slightest possible intervention that would rectify this inconsistency is increasing 
𝜔𝜔31 to 0.7, resulting in a deviation of 0.35. Again, the estimated value of the maximum allowed 
deviation for 𝑘𝑘 = 3 is much smaller than 0.01 regardless of the number of observations and the 
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level of significance. After fitting to the Thurstone model, it’s discovered that the real �∑ 𝛿𝛿2 is 
equal to 0.2599.  

It’s noteworthy that even if we focused solely on 𝜔𝜔31  being less than 0.5, the minimum 
intervention to rectify it would be to increase it by 0.15, which still exceeds the allowed maximum 
deviation. 

Example 3 

Let us investigate the original example used by Thurstone himself, as presented in his seminal 
paper (1929). The empirical frequencies were based on the answers of 266 respondents. 
According to our estimation, the maximum allowed ∑ 𝛿𝛿2 , that would not reject the null 

hypothesis is 192

8∙266
= 0.17 . In Appendix A, we have presented some rough estimations of 

violations of the necessary order of the probabilities, and the sum of their squares is equal to 0.25, 
which is almost 1.5 times more than that ‘allowed.’ It is essential to note that these are very 
conservative estimations, as the necessary order is evidently insufficient for the linear Thurstone 
order to hold. Furthermore, the value of the empirical test statistics estimated with ∑ 𝛿𝛿2 is only 
a lower bound of the real value, as we do not take into account the higher powers of deviations. 
Indeed, when we run the Thurstone model on the given data, the actual ∑ 𝛿𝛿2 is equal to 0.44, 
resulting in the value 𝜒𝜒�𝑒𝑒

2 = 463 (with a critical value equal to 131 for 𝛼𝛼 = 0.1). The exact value 
of test statistics, without omitting higher-order terms, is equal to 𝜒𝜒𝑒𝑒

2 = 742, indicating that the 
hypothesis of the Thurstone linear model must be rejected. However, one does not need to 
perform all those calculations, as the same conclusion can be reached from a very rough 
assessment of the proper ordering of the empirical data. While the estimations presented in 
Appendix A are more detailed for presentation purposes, with experience, one can quickly 
suspect that the data may not fit well to the linear Thurstone model in its simplest version. 

Drawing from this experience, we evaluated a few more examples found in the literature and 
confirmed our expectations with rigorous calculations. These examples reinforce our intuition: if 
the data is based on a sufficiently high number of observations, for 𝑛𝑛 > 100, the order among 
them should be very pronounced and of high quality to avoid rejecting the null hypothesis that 
the model is true after fitting to the Thurstone model. 

Thurstone (1929): 𝑛𝑛 = 266, critical value for 𝛼𝛼 = 0.1 𝜒𝜒𝑐𝑐
2 = 131, empirical value 𝜒𝜒𝑒𝑒

2 = 742, null 
hypothesis rejected; 

Kwan et al. (2000): 𝑛𝑛 = 200, critical value for 𝛼𝛼 = 0.1 𝜒𝜒𝑐𝑐
2 = 74.2, empirical value 𝜒𝜒𝑒𝑒

2 = 1321.82, 
null hypothesis rejected; 

Krabbe (2008): 𝑛𝑛 = 212, critical value for 𝛼𝛼 = 0.1 𝜒𝜒𝑐𝑐
2 = 131.0, empirical value 𝜒𝜒𝑒𝑒

2 = 1711.9, null 
hypothesis rejected; 

Dębicka et al. (2022): 𝑛𝑛 = 219 , critical value for 𝛼𝛼 = 0.1  𝜒𝜒𝑐𝑐
2 = 25.64 , empirical value 𝜒𝜒𝑒𝑒

2 =
226.93, null hypothesis rejected; 

Mosteller (1951): 𝑛𝑛 = 22, critical value for 𝛼𝛼 = 0.1 𝜒𝜒𝑐𝑐
2 = 13.24, empirical value 𝜒𝜒𝑒𝑒

2 = 14.76, null 
hypothesis nearly accepted (it would be accepted at 𝛼𝛼 = 0.17). 

The only example in which the null hypothesis was not rejected was for small sample size, 𝑛𝑛 =
22. These examples support the assertion that with survey studies (larger sample sizes), obtaining 
empirical frequencies that are so neatly ordered is highly improbable that the null hypothesis will 
not be rejected after fitting into the Thurstone model. Conversely, if the frequencies were indeed 
ordered, the model would not need to be applied, as one could deduce the distances between 
the stimuli using only one row/column of the data with outstanding accuracy. 
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6. Discussion and Conclusions 

From the estimations presented in the previous section, it becomes apparent that in many 
situations, especially when the data is based on a large number of observations, it quickly 
becomes evident that such data cannot be fitted to the Thurstone model with sufficient accuracy 
to avoid rejecting the hypothesis of the Thurstone model. In such cases, what could be the 
solution? 

There are three possible pathways to consider. The first is to conclude outright that the Thurstone 
model is unsuitable and choose another tool to analyse the given data. Another potential solution 
is to allow for more flexibility in the model, notably by permitting different standard deviations. 

The possibility of different standard deviations has been discussed since the inception of the 
Thurstone model. Initially, it was only possible to make estimations based on particular 
assumptions about which standard deviation to allow to be different from the rest. However, with 
the computational power available today, it is feasible to numerically minimise the differences 
between theoretical and empirical frequencies (as well as between theoretical and empirical 
spacings) and determine which standard deviations best fit the Thurstone model. While this 
approach may yield much lower values of 𝜒𝜒𝑒𝑒

2  The status of this process is not entirely clear 
compared to those obtained by the standard Thurstone procedure. Is it still the Thurstone model, 
which was based on specific theoretical considerations about the nature of the compared stimuli? 
It is essential to note that if additional degrees of freedom are introduced, such as allowing the 
distance between each pair of stimuli to vary independently, it may result in a 100% fit of the 
‘model’ (if it can still be named this way). However, outcomes would be ambiguous, with none 
highlighted as correct. Therefore, while the computational capabilities of computers are 
undoubtedly advantageous, one must be cautious not to overuse them. 

The third possible pathway to addressing the problem of poor fit of the data to the Thurstone 
model is not treating it as a model that can be true or false but rather as a procedure used to 
impose linear order on data that are not necessarily linear by nature. Linear order acquisition, 
such as during elections or voting for civil projects, is inherently challenging despite the potential 
for inconsistencies and circularity in both individual and grouped preferences. Each system of 
obtaining such linear ordering may not be foolproof, and ongoing discussions persist regarding 
the best voting system, with different countries adopting different solutions. 

If we consider the Thurstone method as one possible procedure for ordering objects, it can be 
compared with other methods, such as the average rank method. The average rank method is 
the simplest and most common, but it has limitations. It is oversimplified and does not account 
for possible differences in spacings between objects ranked by a single respondent as 1 and 2, 2 
and 3, and so on. However, it could be justified if we impose certain assumptions on the 
distribution of spacings, even though these assumptions could be questioned. Additionally, the 
Thurstone assumption itself is also questionable, as in most situations, the data do not pass the 
test. The main difference between the Thurstone method and the average rank method lies in 
linearity. In the average rank method, the difference between 0.9 and 0.8 and between 0.3 and 
0.2 (in the percentage of respondents who preferred one stimulus over another) refers to the 
same spacing. However, in the Thurstone model, the former has much greater dominance than 
the latter. This discrepancy arises from the non-linearity of normal distributions and poses 
challenges, especially in cases of 0 or 1 frequency, which can lead to infinite spacings in the 
standard Thurstone procedure. Although this particular problem can be addressed with ad hoc 
solutions, such as omitting these inputs from the minimised expressions, it prompts the question: 
what are the real advantages of the Thurstone procedure over the simple average rank method, 
especially in cases where the null hypothesis is rejected? 
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Model Thurstone'a: analiza danych ankietowych i ranking bodźców – model czy 
procedura? 

Streszczenie: Niniejsza praca bada przydatność modelu Thurstone'a w badaniach preferencji. 
Adekwatność modelu Thurstone'a szeroko wykorzystywanego do ustalania liniowych porządków 
między bodźcami została poddana empirycznej walidacji. W badaniu zaproponowano nowatorski 
test walidacji empirycznej w celu oceny stosowalności modelu, w szczególności w odniesieniu do 
dużych prób. Wyniki sugerują ograniczenia w stosowaniu modelu Thurstone'a na dużych próbach. 
W związku z tym artykuł zawiera spostrzeżenia dla badaczy wykorzystujących ten model w celu 
uszeregowania bodźców i wytyczne dotyczące weryfikacji jego przydatności. Ponadto omówiono 
alternatywne sposoby radzenia sobie ze słabym dopasowaniem modelu, w tym uwzględnianie 
różnych odchyleń standardowych i traktowanie metody Thurstone'a nie jako ostatecznego 
modelu, ale jako procedury porządkowania obiektów. Dodatkowo badanie porównuje metodę 
Thurstone'a z metodą średniej rangi, podkreślając zalety i wyzwania każdego podejścia. Badanie 
to przyczynia się do zrozumienia złożoności badań preferencji i zapewnia cenny wgląd 
w udoskonalanie podejść metodologicznych w tej dziedzinie. 

Słowa kluczowe: model Thurstone'a, badania preferencji, walidacja empiryczna, ranking bodźców 
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Appendix  

Best ordering of frequencies from (Thurstone, 1929). In bold – deviations in columns underlined, 
and in italics – deviations in rows 

 

Estimated deviations in columns (with the accuracy up to centesimal parts) 

 
Estimated deviations in rows (with the accuracy up to centesimal parts) 

 
 
 

p19 p16 p5 p18 p13 p12 p4 p6 p9 p7 p8 p14 p3 p2 p11 p1 p17 p10 p15
p19 0,939 0,884 0,963 0,933 0,947 0,928 0,973 0,965 0,958 0,951 0,985 0,981 0,966 0,974 0,955 0,977 0,989 0,985
p16 0,473 0,525 0,47 0,732 0,656 0,779 0,805 0,801 0,859 0,796 0,86 0,857 0,902 0,857 0,875 0,973 0,981
p5 0,576 0,506 0,678 0,621 0,764 0,754 0,745 0,738 0,728 0,864 0,828 0,924 0,872 0,871 0,955 0,985
p18 0,544 0,635 0,654 0,716 0,74 0,785 0,749 0,778 0,83 0,796 0,914 0,826 0,879 0,974 0,977
p13 0,652 0,615 0,678 0,68 0,716 0,752 0,702 0,855 0,818 0,894 0,809 0,886 0,966 0,981
p12 0,615 0,667 0,657 0,697 0,695 0,648 0,785 0,793 0,83 0,778 0,848 0,97 0,97
p4 0,515 0,534 0,556 0,485 0,587 0,74 0,757 0,743 0,789 0,785 0,97 0,947
p6 0,58 0,593 0,605 0,478 0,774 0,719 0,856 0,762 0,769 0,981 0,981
p9 0,512 0,65 0,534 0,746 0,726 0,819 0,788 0,82 0,951 0,966
p7 0,54 0,533 0,679 0,715 0,804 0,756 0,756 0,947 0,963
p8 0,474 0,652 0,747 0,752 0,755 0,774 0,958 0,977
p14 0,651 0,755 0,712 0,744 0,767 0,921 0,951
p3 0,585 0,563 0,662 0,716 0,917 0,944
p2 0,365 0,677 0,589 0,863 0,925
p11 0,682 0,595 0,917 0,902
p1 0,419 0,76 0,822
p17 0,819 0,924
p10 0,441

0,03 0,05 0,03 0,02 0,03 0,05 0,04 0,01 0,05 0,02 0,02 0,02 0,02 0,01 0,02 0,01
0,04 0,04 0,12 0,03 0,03 0,01 0,09 0,01 0,05 0,01 0,02

0,03 0,02 0,02 0,02 0,01 0,01
0,04 0,14 0,01 0,01 0,05 0,1

0,01 0,08 0,05 0,06

0,03 0,05 0,03 0,02 0,03 0,05 0,04 0,01 0,05 0,02 0,02 0,02 0,02 0,01 0,02 0,01
0,04 0,04 0,12 0,03 0,03 0,01 0,09 0,01 0,05 0,01 0,02

0,03 0,02 0,02 0,02 0,01 0,01
0,04 0,14 0,01 0,01 0,05 0,1

0,01 0,08 0,05 0,06
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