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For this model, the nearly almost complete uniform convergence and rate of convergence are 
established.  

The rates of convergence highlight the critical part that the probability of concentration play in the law 
of the explanatory functional variable. Additionally, we establish the asymptotic normality of the 
derived  estimators  proposed under specific mild conditions, relying on standard assumptions in 
Functional Data Analysis (FDA) for the proofs. Finally, we explore the practical application of our 
findings in constructing confidence intervals for our estimators. The rates of convergence highlight the 
critical part that the probability of concentration play in the law of the explanatory functional variable. 

Keywords: functional data analysis, functional single-index process, kernel estimator, missing at 
random, nonparametric estimation, small ball probability 

1. Introduction  

The field of nonparametric statistics deals with estimating unknown functions from data without 
assuming a specific parametric form for the underlying distribution. Functional data analysis (FDA) is 
a subfield of statistics that deals with data that can be viewed as functions, often represented as curves 
or smooth functions. These could be, for example, time series data or spatial data where each 
observation is a curve or function. 

In this context, the asymptotic results refer to the behaviour of estimators as the sample size 
approaches infinity. Some common asymptotic results include: 

Consistency: an estimator is consistent if it converges in probability to the true value of the parameter 
being estimated as the sample size grows. In other words, the estimator becomes more and more 
accurate as more data becomes available. 

Asymptotic normality: under certain conditions, the estimator's distribution approaches a normal 
distribution as the sample size increases. This property is essential for constructing confidence intervals 
and conducting hypothesis tests. 

Asymptotic efficiency: an efficient estimator achieves the smallest possible variance among all 
consistent estimators, as the sample size becomes large. 

Rates of convergence: this refers to how fast an estimator converges to the true parameter value as 
the sample size increases. Different estimators may have different rates of convergence.  

The specific asymptotic results for estimators in nonparametric models with functional data would 
depend on the specific estimation method and the assumptions made in the analysis. Researchers 
typically derive these results by establishing mathematical properties of the estimators and their 
behaviour as the sample size grows. These results provide valuable insights into the performance and 
limitations of different estimation approaches in functional data analysis.  

Estimating the conditional mode for functional data in the Single Index Model (SIM) with Missing Data 
at Random (MAR) is a challenging problem in nonparametric statistics and functional data analysis. 
The Single Index Model is a popular framework used for reducing dimensionality and modelling 
complex relations between covariates and responses in a simplified way. When dealing with functional 
data, where each observation is a curve or function, the SIM is extended to handle functional 
predictors and responses. 

In the context of Missing Data at Random (MAR), the ‘missingness’ in the data is assumed to be 
dependent on the observed variables but not on the unobserved (missing) data. This assumption 
allows for various imputation methods to handle missing values in the functional data effectively. 
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Estimating the conditional mode involves finding the most likely value of the response variable given 
the observed functional predictors under the SIM, which can be a challenging task, especially with 
missing data. Several approaches and algorithms have been proposed in the literature to address this 
problem. Some common methods include: 

Multiple Imputation: one approach is to use multiple imputation techniques to impute the missing 
functional data values. Several imputed datasets are created, and the conditional mode is estimated 
for each imputed dataset separately. The results are then combined to obtain an overall estimate. 

EM Algorithm: the Expectation-Maximisation (EM) algorithm can be used to iteratively impute the 
missing values and estimate the conditional mode in a SIM setting with missing data. 

Nonparametric Smoothing: nonparametric smoothing techniques, such as kernel smoothing or spline 
methods, can be employed to estimate the conditional mode for functional data. 

Local Polynomial Estimation: local polynomial estimators can be used to estimate the conditional 
mode by fitting polynomials to local segments of the data. 

Profile Likelihood: profile likelihood-based approaches can also be used to estimate the conditional 
mode for functional data in the SIM with missing data. 

It is important to note that the choice of the estimation method may depend on the specific 
characteristics of the data and the nature of the missingness. Additionally, assessing the performance 
of these methods often involves simulations and comparisons on synthetic and real-world datasets 
with known missingness patterns.  

The Single Index Model (SIM) is a financial modelling technique used to analyse the risk and return of 
a portfolio. It assumes that the returns of individual assets can be explained by their exposure to 
a common factor or market index. When dealing with missing data in the SIM framework, the 
missingness is assumed to be at random (MAR). This means that the missing values are related to the 
observed data but not to the missing values themselves. It is important to note that the choice of 
approach depends on the specifics of the data, the extent of missingness, and the assumptions one is 
willing to make. It is always recommended to carefully consider the nature of the data and consult with 
domain experts when handling missing data in the SIM or any other modelling framework.  

The asymptotic properties of semi-parametric estimators of the conditional mode for functional data 
in the Single Index Model (SIM) with missing data at random (MAR) are an active area of research, and 
specific results may depend on the particular assumptions and estimation methods employed. 
However, this study can provide a general overview of some relevant concepts and approaches in this 
context. In the SIM framework, functional data refers to observations that are functions rather than 
scalar values. The goal is to estimate the conditional mode of a functional response variable given a set 
of functional predictors and a single index variable.  

To establish the asymptotic properties of the semi-parametric estimators of the conditional mode for 
functional data in the SIM with missing data at random, various theoretical conditions need to be 
satisfied. These conditions often involve assumptions about the functional data, the missing data 
mechanism, and the model specification. Some common conditions include consistency and efficiency. 
Specific results in this area may depend on the assumptions and estimation techniques employed in 
each study. Therefore, one should refer to the literature and research articles that focus on the specific 
estimation method and the relevant assumptions to obtain more detailed and precise asymptotic 
properties of the estimators.  

One of the most frequently encountered problems in non-parametric statistics is the question of 
forecasting. In some situations, regression is the main tool adapted to answer this question. However, 
in other situations, such as in the case where the conditional density is asymmetrical or multimodal, 
this tool is inadequate. Therefore, the conditional quantile better predicts the impact of the variable 
of interest 𝑌𝑌 on explanatory variable 𝑋𝑋. When the explanatory variable is infinite dimensional or it is 
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of functional nature, only very few studies were reported to investigate the statistical properties of 
functional nonparametric regression model for missing data. Relatively recently, Ferraty, Sued and 
Vieu (2013) first proposed to estimate the mean of a scalar response based on an i.i.d. functional 
sample in which explanatory variables are observed for every subject, while part of the responses are 
missing at random (MAR) for some of them. This generalised the results obtained in Cheng (1994) to 
the case where the explanatory variables are of functional nature.  

To the best of the authors’ knowledge, the estimation of the nonparametric conditional distribution in 
the functional single index structure, combining missing data and stationary processes with functional 
nature, has not been studied in the statistical literature. Thus, in theed present work, the authors 
investigated conditional quantile estimation when the data are MAR. The aim was to develop 
a functional methodology for dealing with MAR samples in non-parametric problems (namely – in 
conditional quantile estimation). Then, the asymptotic properties of the estimator were obtained 
under some mild conditions, Hence the study considers a model in which the response variable is 
missing. Alongside the infinite dimensional character of the data, the authors avoided the strong 
mixing condition and its variants to measure the dependency and the very involved probabilistic 
calculations that it implies.  

Therefore, the study considers, in this setting, the independent concept. As far as is known, the 
estimation of conditional quantile combining censored data, independent theory, and functional data 
with single-index structure has not been studied in the statistical literature. This work extends, to the 
functional single index model case, the work of Ling, Liang and Vieu (2015), Ling, Liu and Vieu (2016) 
and Rabhi, Kadiri and Mekki (2021). For the above mentioned theoretical and application reasons, the 
statistical community has shown great interest in estimating conditional quantiles, specifically the 
conditional median function, as an interesting alternative predictor to the conditional mean, thanks to 
its robustness to the presence of outliers (see Chaudhuri et al., 1997). The estimation of the conditional 
mode of a scalar response given a functional covariate has attracted the attention of many researchers. 
Ferraty, Rabhi and Vieu (2005) introduced a nonparametric estimator of the conditional quantile, 
defined as the inverse of the conditional distribution function, when data are dependent. Ezzahrioui 
and Ould-Saïd (2008) established the asymptotic normality of the kernel conditional mode estimator. 
In the censored scope, Ould-Saïd and Cai (2005) stated the uniform strong consistency with rates of 
the kernel estimator of the conditional mode function, and in this context the study refers to Lemdani, 
Ould-Saïd and Poulin (2009) for the estimation of conditional quantiles. Other authors were interested 
in the estimation of conditional models when the observations are censored or truncated (see e.g. 
Hamri et al., 2022; Liang and de Uña-Alvarez, 2010; Ould-Saïd and Djabrane, 2011; Ould-Saïd and 
Tatachak, 2011; Rabhi et al., 2021, etc.).  

For instance, Aït-Saidi, Ferraty, Kassa and Vieu (2008) were interested in using SFIM to estimate the 
regression operator and suggested using a cross-validation procedure allowing the estimated unknown 
link function as well as the unknown functional index. Attaoui and Boudiaf (2014) and Attaoui and Ling 
(2016) studied, respectively, the estimation of the conditional density and the conditional cumulative 
distribution function based on a SFIM and assuming that the data satisfy a strong mixing condition. 
Kadiri, Bouchentouf and Rabhi (2018) examined the asymptotic properties of the kernel-type estimator 
of the conditional quantiles when the response is right-censored and the data is sampled from a strong 
mixing process. 

The rest of the paper is arranged as follows: Section 2 presents the non-parametric estimator of the 
functional conditional model, when the data are MAR; Section 3 poses useful assumptions for this 
theoretical study, followed by the point-wise almost complete convergence, and the uniform almost-
-complete convergence of the kernel estimator for the models (with rates) is established in Section 4. 
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2. Model and Estimator 

2.1. The Functional Nonparametric Framework 

Consider a random pair (𝑋𝑋,𝑌𝑌) where Y is valued in ℝ and X is valued in some infinite dimensional 
Hilbertian space ℋ  with scalar product  <·, · > considering that, given that (𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖)𝑖𝑖=1,…,𝑛𝑛  is the 
statistical sample of pairs which are identically distributed like (𝑋𝑋,𝑌𝑌), but not necessarily independent. 
Henceforward, X is called a functional random variable f.r.v. Let x be fixed in ℋ and let 𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥) be 
the conditional cumulative distribution function (cond-cdf) of T given < θ,X >=< θ,x > specifically:  

 ∀𝑦𝑦 ∈ ℝ, 𝐹𝐹 (θ, y, x) = ℙ(Y ≤ y| < θ,X >=< θ,x >).  

In saying that, one is implicitly assuming the existence of a regular version of conditional distribu- 
tion Y given < θ,X >=< θ,x >. 

For the infinite dimensional purpose, the authors used the term functional nonparametric, where 
functional refers to the infinite dimensionality of the data, and where nonparametric refers to the 
infinite dimensionality of the model. Such functional nonparametric statistics is also called doubly 
infinite dimensional (see Ferraty and Vieu (2003) for more details). The authors also used the term 
operational statistics since the target object to be estimated (the cond-df  𝑓𝑓(𝜃𝜃, . , 𝑥𝑥)) can be viewed as 
a nonlinear operator.  

2.2. The Estimators 

In the case of complete data, the kernel estimator 𝑓𝑓𝑛𝑛(𝜃𝜃, . , 𝑥𝑥) of 𝑓𝑓(𝜃𝜃, . , 𝑥𝑥) is presented as follows: 

 
𝑓𝑓(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) =

𝑔𝑔𝑛𝑛−1 ∑ 𝐾𝐾�ℎ𝑛𝑛−1(|< 𝑥𝑥 − 𝑋𝑋𝑖𝑖,𝜃𝜃 >|)�𝐻𝐻�𝑔𝑔𝑛𝑛−1(𝑦𝑦 − 𝑌𝑌𝑖𝑖)�𝑛𝑛
𝑖𝑖=1

∑ 𝐾𝐾�ℎ𝑛𝑛−1(< 𝑥𝑥 − 𝑋𝑋𝑖𝑖,𝜃𝜃 >)�𝑛𝑛
𝑖𝑖=1

, (2.1) 

where 𝐾𝐾 and 𝐻𝐻 are kernel functions and ℎ𝑛𝑛 (resp. 𝑔𝑔𝑛𝑛) a sequence of positive real numbers. Note that 
using similar ideas, Roussas (1969) introduced some related estimates, but only in the special case 
when X is real, while Samanta (1989) produced an earlier asymptotic study. 

Meanwhile, in an incomplete case with missing at random for the response variable, we examine 
(𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖, 𝛿𝛿𝑖𝑖  )1≤𝑖𝑖≤𝑛𝑛 where 𝑋𝑋𝑖𝑖  is observed completely, and 𝛿𝛿𝑖𝑖 = 1 if 𝑌𝑌𝑖𝑖  is observed and 𝛿𝛿𝑖𝑖 = 0 otherwise. 
The Bernoulli random variable 𝛿𝛿 is defined by 

 ℙ(𝛿𝛿 = 1|〈𝑋𝑋,𝜃𝜃〉 = 〈𝑥𝑥,𝜃𝜃〉,𝑌𝑌 = 𝑦𝑦) = ℙ(𝛿𝛿 = 1|〈𝑋𝑋,𝜃𝜃〉 = 〈𝑥𝑥,𝜃𝜃〉) = 𝑝𝑝(𝑥𝑥,𝜃𝜃),  

where 𝑝𝑝(𝑥𝑥, 𝜃𝜃) is a functional operator which is conditional only on 𝑋𝑋. Therefore, the estimator of 
𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥) in the single index model with response MAR is given by 

 
𝑓𝑓(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) =

𝑔𝑔𝑛𝑛−1 ∑ 𝛿𝛿𝑖𝑖𝐾𝐾�ℎ𝑛𝑛−1(|< 𝑥𝑥 − 𝑋𝑋𝑖𝑖,𝜃𝜃 >|)�𝐻𝐻�𝑔𝑔𝑛𝑛−1(𝑦𝑦 − 𝑌𝑌𝑖𝑖)�𝑛𝑛
𝑖𝑖=1

∑ 𝛿𝛿𝑖𝑖𝐾𝐾�ℎ𝑛𝑛−1(< 𝑥𝑥 − 𝑋𝑋𝑖𝑖, 𝜃𝜃 >)�𝑛𝑛
𝑖𝑖=1

=
 𝑓𝑓𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥)
      𝑓𝑓𝐷𝐷(𝜃𝜃, 𝑥𝑥)

, (2.2) 

where 𝐾𝐾𝑖𝑖(𝜃𝜃, 𝑥𝑥): = K(ℎ𝑛𝑛−1|< 𝑥𝑥 − 𝑋𝑋𝑖𝑖 ,𝜃𝜃 >|), 𝐻𝐻𝑖𝑖(𝑦𝑦) = 𝐻𝐻�𝑔𝑔𝑛𝑛−1(𝑦𝑦 − 𝑌𝑌𝑖𝑖)�,  

 𝑓𝑓𝐷𝐷(𝜃𝜃, 𝑥𝑥) = ∑ 𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖(𝜃𝜃,𝑥𝑥)𝑛𝑛
𝑖𝑖=1
𝑛𝑛𝔼𝔼�𝐾𝐾1(𝜃𝜃,𝑥𝑥)�

   and  𝑓𝑓𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥) = ∑ 𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖(𝜃𝜃,𝑥𝑥)𝐻𝐻𝑖𝑖(𝑦𝑦)𝑛𝑛
𝑖𝑖=1
𝑛𝑛𝑔𝑔𝑛𝑛𝔼𝔼�𝐾𝐾1(𝜃𝜃,𝑥𝑥)�

.  
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2.3. Assumptions on the Functional Variable 

Let 𝑁𝑁𝑥𝑥  be a fixed neighbourhood of x in ℋ and let Bθ(x,h) be the ball of centre x and radius h, namely 
Bθ(x,h) = { 𝜒𝜒 ∈ ℋ: 0 <| < x − 𝜒𝜒,θ >| < h}, dθ (x,Xi) = | < x −Xi,θ >| denote a random variable such that its 
cumulative distribution function is given by 𝜙𝜙𝜃𝜃,𝑥𝑥(𝑢𝑢) = ℙ(𝑑𝑑𝜃𝜃(𝑥𝑥,𝑋𝑋𝑖𝑖) ≤ 𝑢𝑢) = ℙ�𝑋𝑋𝑖𝑖 ∈ 𝐵𝐵𝜃𝜃(𝑥𝑥,𝑢𝑢)�. 

Now, consider the following basic assumptions that are necessary in deriving the main result of this 
paper. 

(H1) ℙ�𝑋𝑋 ∈  𝐵𝐵𝜃𝜃(𝑥𝑥,ℎ𝑛𝑛)� =:𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛) > 0;𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛) ⟶  0 as ℎ𝑛𝑛 →  0.  

3. Asymptotic Study  

Here, the objective was to adapt these ideas to the framework of a functional explanatory variable, 
and to construct a kernel-type estimator of the conditional density function 𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥) adapted to MAR 
response samples. Thus, the aim was  to establish a uniform almost complete convergence of  kernel 
estimator 𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)  when one considers a model in which the response variable is missing. The 
presented results are accompanied by the data on the rate of convergence. Therefore, C and C'  denote 
generic strictly positive real constants, where ℎ𝑛𝑛 (resp. 𝑔𝑔𝑛𝑛) is a sequence which tends to 0 with 𝑛𝑛. 

3.1. Uniform Almost Complete Convergence and Rate of Convergence 

In this section, the authors adapted these ideas to the framework of a functional explanatory variable, 
to construct a kernel-type estimator of conditional density function 𝑓𝑓(θ, y, x) adapted to the MAR 
response samples. The objective was to establish an almost complete uniform convergence of kernel 
estimator 𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥) when one considers a model in which the response variable is missing, which is 
standard extensions of the pointwise results. Clearly, achieving these outcomes necessitates more 
intricate technical advancements compared to those outlined in the context of standard results 
pertaining to almost complete pointwise convergence. The results presented are accompanied by the 
data on the rate of convergence. Thus, C and C' denote generic strictly positive real constants, and ℎ𝑛𝑛 
(resp. 𝑔𝑔𝑛𝑛) is a sequence which tends to 0 with 𝑛𝑛. 

To enhance the clarity of this concept, it was necessary to employ additional tools and consider certain 
topological conditions (see Hamri et al., 2022). Initially, due to the compactness o sets 𝑆𝑆ℋ and Θℋ , it 
was possible to cover them using a finite number of disjoint intervals. Let 𝑑𝑑𝑛𝑛

𝑆𝑆ℋ  and 𝑑𝑑𝑛𝑛
Θℋdenote the 

minimal numbers of open balls with radius 𝑟𝑟𝑛𝑛 in ℋ that are required to cover 𝑆𝑆ℋ and Θℋ , respectively. 
Within these intervals, points  𝑥𝑥𝑘𝑘 (resp. 𝑡𝑡𝑗𝑗) ∈  ℋ. 

𝑆𝑆ℋ ⊂ �𝐵𝐵𝜃𝜃

𝑑𝑑𝑛𝑛
𝑆𝑆ℋ

𝑘𝑘=1

(𝑥𝑥𝑘𝑘 , 𝑟𝑟𝑛𝑛) 𝑎𝑎𝑛𝑛𝑑𝑑 Θℋ ⊂ � 𝐵𝐵𝜃𝜃

𝑑𝑑𝑛𝑛
Θℋ

𝑗𝑗=1

�𝑡𝑡𝑗𝑗, 𝑟𝑟𝑛𝑛�. 

3.2. Conditional Density Estimation 

The objective of this part is to demonstrate almost complete uniform convergence. In order to extend 
the results to the uniform case, it was essential to introduce a topological framework for the functional 
space of the observations and the functional character of the proposed model. The asymptotic 
conclusions made use of the topological properties in the functional space of the study’s observations. 
It is worth mentioning that all the convergence rates rely on the assumption of probability measure 
concentration of the functional variable within small balls, as well as the concept of Kolmogorov's 
entropy, which quantifies the number of balls required to cover a given set. To achieve this objective, 
the authors introduced the following conditions: 
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(H2) Kernel H is a positive bounded function such that  

(i) ∀(𝑦𝑦1,𝑦𝑦2) ∈ ℝ2, |𝐻𝐻(𝑦𝑦1) −𝐻𝐻(𝑦𝑦2)| ≤ 𝐶𝐶|𝑦𝑦1 − 𝑦𝑦2|, ∫|𝑦𝑦|𝛼𝛼2𝐻𝐻(𝑦𝑦)𝑑𝑑𝑦𝑦 < ∞, ∫𝐻𝐻2(𝑡𝑡)𝑑𝑑𝑡𝑡 < ∞. 

(ii) 𝐻𝐻(1) and 𝐻𝐻(2) are bounded with ∫ �𝐻𝐻(1)(𝑡𝑡)�
2
𝑑𝑑𝑡𝑡 < ∞. 

(H3) 𝐾𝐾 is a positive bounded kernel function with support [0,1]: ∀𝑢𝑢 ∈ (0,1), 0 < K(𝑢𝑢) and the Lipschitz 
condition holds  |𝐾𝐾(𝑥𝑥) − 𝐾𝐾(𝑦𝑦)| ≤ ‖𝑥𝑥 − 𝑦𝑦‖,  and derivative 𝐾𝐾 ʹ  exists on [0,1] with 𝐾𝐾 ʹ(𝑡𝑡) < 0 for all 
𝑡𝑡 ∈ [0, 1] and ∫ �𝐾𝐾𝑗𝑗�ʹ(𝑡𝑡)𝑑𝑑𝑡𝑡 < ∞1

0  for 𝑗𝑗 = 1,2. 

(H4) There exists function 𝜙𝜙(·) that is differentiable, ∀𝑥𝑥 ∈ 𝑆𝑆ℋ and ∀𝜃𝜃 ∈ Θℋ,  

 
  0 < 𝐶𝐶𝜙𝜙(ℎ) ≤ 𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ) ≤ 𝐶𝐶′𝜙𝜙(ℎ) < ∞ and ∃𝜂𝜂0 > 0, 𝜂𝜂 < 𝜂𝜂0,𝜙𝜙′(𝜂𝜂) < 𝐶𝐶.  

(H5) Conditional density 𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥) satisfies the uniform Hölder condition, i.e. there exist some 
𝛼𝛼1,𝛼𝛼2 > 0 and 𝐶𝐶 > 0 such that for ∀(𝑥𝑥1,𝑥𝑥2) ∈ 𝑆𝑆ℋ × 𝑆𝑆ℋ, ∀(𝑦𝑦1,𝑦𝑦2) ∈ 𝑆𝑆ℝ × 𝑆𝑆ℝ and ∀𝜃𝜃 ∈ Θℋ, 

 |𝑓𝑓(𝜃𝜃,𝑦𝑦1, 𝑥𝑥1) − 𝑓𝑓(𝜃𝜃,𝑦𝑦2, 𝑥𝑥2)| ≤ 𝐶𝐶(‖𝑥𝑥1 − 𝑥𝑥2‖𝛼𝛼1 + |𝑦𝑦1 − 𝑦𝑦2|𝛼𝛼2).  

(H6) 𝑝𝑝(𝑥𝑥,𝜃𝜃) is continuous in a neighbourhood of 𝑥𝑥, such that 0 < 𝑝𝑝(𝑥𝑥,𝜃𝜃) < 1. 

(H7) for some 𝜈𝜈 ∈ (0, 1), lim
𝑛𝑛→∞

𝑛𝑛𝜈𝜈𝑔𝑔𝑛𝑛 = ∞, and for 𝑟𝑟𝑛𝑛 = 𝒪𝒪 �𝑙𝑙𝑙𝑙𝑔𝑔𝑛𝑛
𝑛𝑛
�, sequences 𝑑𝑑𝑛𝑛

𝑆𝑆ℋ  and 𝑑𝑑𝑛𝑛
Θℋ  satisfy: 

 

⎩
⎪⎪
⎨

⎪⎪
⎧(𝑖𝑖) 

(𝑙𝑙𝑙𝑙𝑔𝑔 𝑛𝑛)2

𝑛𝑛𝑔𝑔𝑛𝑛2𝜙𝜙(ℎ𝑛𝑛)
< 𝑙𝑙𝑙𝑙𝑔𝑔 𝑑𝑑𝑛𝑛

𝑆𝑆ℋ + 𝑙𝑙𝑙𝑙𝑔𝑔 𝑑𝑑𝑛𝑛
𝛩𝛩ℋ <

𝑛𝑛𝑔𝑔𝑛𝑛2𝜙𝜙(ℎ𝑛𝑛)
𝑙𝑙𝑙𝑙𝑔𝑔 𝑛𝑛

,      

(𝑖𝑖𝑖𝑖) �𝑛𝑛
(3𝜈𝜈+1)

2� �𝑑𝑑𝑛𝑛
𝑆𝑆ℋ𝑑𝑑𝑛𝑛

𝛩𝛩ℋ�
1−𝜉𝜉

∞

𝑛𝑛=1

< ∞ 𝑓𝑓𝑙𝑙𝑟𝑟 𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠 𝜉𝜉 > 1,

(𝑖𝑖𝑖𝑖𝑖𝑖) 𝑛𝑛𝑔𝑔𝑛𝑛2𝜙𝜙(ℎ𝑛𝑛) = 𝒪𝒪((𝑙𝑙𝑙𝑙𝑔𝑔 𝑛𝑛)2).                                         

  

In what follows, denote  

Υ𝑖𝑖(𝜃𝜃, 𝑥𝑥) =
1

𝑔𝑔𝑛𝑛𝜙𝜙(ℎ𝑛𝑛) 1𝐵𝐵𝜃𝜃(𝑥𝑥,ℎ)∪𝐵𝐵𝜃𝜃(𝑥𝑥𝑘𝑘(𝑥𝑥),ℎ)(𝑋𝑋𝑖𝑖),

Ω𝑖𝑖(𝜃𝜃, 𝑥𝑥) =
1

𝑔𝑔𝑛𝑛𝜙𝜙(ℎ𝑛𝑛) 1𝐵𝐵𝜃𝜃(𝑥𝑥𝑘𝑘(𝑥𝑥),ℎ)∪𝐵𝐵𝑡𝑡𝑗𝑗(𝜃𝜃)(𝑥𝑥𝑘𝑘(𝑥𝑥),ℎ)(𝑋𝑋𝑖𝑖),

Ψ𝑖𝑖�𝑡𝑡𝑗𝑗(𝜃𝜃),𝑥𝑥𝑘𝑘(𝑥𝑥)� =
𝛿𝛿𝑖𝑖𝐾𝐾 �ℎ𝑛𝑛−1�< 𝑥𝑥𝑘𝑘(𝑥𝑥) − 𝑋𝑋𝑖𝑖, 𝑡𝑡𝑗𝑗(𝜃𝜃) >��

𝔼𝔼 �𝐾𝐾 �ℎ𝑛𝑛−1�< 𝑥𝑥𝑘𝑘(𝑥𝑥) − 𝑋𝑋𝑖𝑖, 𝑡𝑡𝑗𝑗(𝜃𝜃) >���
.

 

and Σ𝑖𝑖(𝜃𝜃, 𝑥𝑥) =
1
𝑔𝑔𝑛𝑛

𝛿𝛿𝑖𝑖𝐾𝐾 �ℎ𝑛𝑛−1�〈𝑡𝑡𝑗𝑗(𝜃𝜃),𝑥𝑥𝑘𝑘(𝑥𝑥) − 𝑋𝑋𝑖𝑖〉��

𝔼𝔼�𝐾𝐾 �ℎ𝑛𝑛−1�〈𝑡𝑡𝑗𝑗(𝜃𝜃),𝑥𝑥𝑘𝑘(𝑥𝑥) − 𝑋𝑋𝑖𝑖〉���
𝐻𝐻 �𝑔𝑔𝑛𝑛−1�𝑦𝑦𝑘𝑘(𝑦𝑦) − 𝑌𝑌𝑖𝑖��

−
1
𝑔𝑔𝑛𝑛

𝔼𝔼

⎝

⎜
⎛ 𝛿𝛿𝑖𝑖𝐾𝐾 �ℎ𝑛𝑛−1�〈𝑡𝑡𝑗𝑗(𝜃𝜃), 𝑥𝑥𝑘𝑘(𝑥𝑥) − 𝑋𝑋𝑖𝑖〉��

𝔼𝔼�𝐾𝐾 �ℎ𝑛𝑛−1�〈𝑡𝑡𝑗𝑗(𝜃𝜃), 𝑥𝑥𝑘𝑘(𝑥𝑥) − 𝑋𝑋𝑖𝑖〉���
𝐻𝐻 �𝑔𝑔𝑛𝑛−1�𝑦𝑦𝑘𝑘(𝑦𝑦) − 𝑌𝑌𝑖𝑖��

⎠

⎟
⎞

.
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Theorem 3.1. Assuming hypotheses (H1) to (H7), if ∃𝛽𝛽 > 0,𝑛𝑛𝛽𝛽𝑔𝑔𝑛𝑛2 𝑛𝑛→∞
�⎯⎯�∞, and if lim

𝑛𝑛→∞
𝑙𝑙𝑙𝑙𝑔𝑔𝑛𝑛

𝑛𝑛𝑔𝑔𝑛𝑛2𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
= 0, 

one has 

 
𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃𝑦𝑦∈𝑆𝑆ℝ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

�𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)� = 𝒪𝒪�ℎ𝑛𝑛
𝛼𝛼1 + 𝑔𝑔𝑛𝑛

𝛼𝛼2�+ 𝒪𝒪𝑎𝑎.𝑐𝑐𝑙𝑙. ��
𝑙𝑙𝑙𝑙𝑔𝑔𝑑𝑑𝑛𝑛

𝑆𝑆ℋ𝑑𝑑𝑛𝑛
𝛩𝛩ℋ

𝑛𝑛𝑔𝑔𝑛𝑛2𝜙𝜙(ℎ𝑛𝑛)
�.  

Proof. Clearly, the proof was constructed formed on the following decomposition and the following 
intermediate results, which holds true for any 𝑦𝑦 ∈ 𝑆𝑆ℝ, 𝜃𝜃 ∈ Θℋ , and 𝑥𝑥 ∈ 𝑆𝑆ℋ: 

 Ξ(𝜃𝜃,𝑦𝑦, 𝑥𝑥) = 𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃𝑦𝑦∈𝑆𝑆ℝ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

�𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�                                         

   ≤
1

𝑓𝑓𝐷𝐷(𝜃𝜃, 𝑥𝑥)
𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃𝑦𝑦∈𝑆𝑆ℝ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

�𝑓𝑓𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝔼𝔼𝑓𝑓𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥)� 

        +
1 

𝑓𝑓𝐷𝐷(𝜃𝜃, 𝑥𝑥)
𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃𝑦𝑦∈𝑆𝑆ℝ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

�𝔼𝔼𝑓𝑓𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�

  

 
+
𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)
𝑓𝑓D(𝜃𝜃, 𝑥𝑥)

𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

�𝑓𝑓D(𝜃𝜃, 𝑥𝑥) − 𝔼𝔼𝑓𝑓D(𝜃𝜃, 𝑥𝑥)�. (3.1) 

Lemma 3.1. Under conditions (H1), (H2) and (H5), (H6), one has: 

𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃𝑦𝑦∈𝑆𝑆ℝ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

�𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝔼𝔼�𝑓𝑓𝑁𝑁(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)�� = 𝒪𝒪�ℎ𝑛𝑛
𝛼𝛼1 + 𝑔𝑔𝑛𝑛

𝛼𝛼2�. 

Proof. One has: 

𝐼𝐼 = 𝔼𝔼𝑓𝑓𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥) = 𝔼𝔼�
1

𝑛𝑛𝑔𝑔𝑛𝑛𝔼𝔼�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�
�𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖(𝜃𝜃, 𝑥𝑥)𝐻𝐻𝑖𝑖(𝑦𝑦)
𝑛𝑛

𝑖𝑖=1

� − 𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)

                                 =
1

𝑛𝑛𝑔𝑔𝑛𝑛𝔼𝔼�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�
�𝔼𝔼([𝔼𝔼(𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖(𝜃𝜃, 𝑥𝑥)𝐻𝐻𝑖𝑖(𝑦𝑦)|<  𝜃𝜃,𝑋𝑋𝑖𝑖 >)])
𝑛𝑛

𝑖𝑖=1

− 𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥),

               =
1

𝑔𝑔𝑛𝑛𝔼𝔼�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�
𝔼𝔼�𝑝𝑝(𝑥𝑥,𝜃𝜃)𝐾𝐾1(𝜃𝜃, 𝑥𝑥)𝔼𝔼(𝐻𝐻1(𝑦𝑦))� − 𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥);

 

Moreover, by changing variables and using the fact that 𝐻𝐻 is a df and using a double conditioning with 
respect to 𝑌𝑌1, one can easily obtain 

 𝔼𝔼�𝐻𝐻�𝑔𝑔𝑛𝑛−1(𝑦𝑦 − 𝑌𝑌1)�|<  𝜃𝜃,𝑋𝑋1 >� =  � 𝐻𝐻�
𝑦𝑦 − 𝑢𝑢
𝑔𝑔𝑛𝑛

�𝑓𝑓(𝜃𝜃,𝑢𝑢,𝑋𝑋1)𝑑𝑑𝑢𝑢
ℝ

                                                                   =  �𝐻𝐻(𝑣𝑣)𝑓𝑓(𝜃𝜃,𝑦𝑦 − 𝑣𝑣𝑔𝑔𝑛𝑛,𝑋𝑋1)𝑑𝑑𝑣𝑣
ℝ

 =  𝑔𝑔𝑛𝑛 �𝐻𝐻(𝑣𝑣)�𝑓𝑓(𝜃𝜃,𝑦𝑦 − 𝑣𝑣𝑔𝑔𝑛𝑛,𝑋𝑋1) − 𝑓𝑓(𝜃𝜃,𝑢𝑢, 𝑥𝑥)�𝑑𝑑𝑣𝑣
ℝ

+ 𝑔𝑔𝑛𝑛𝑓𝑓(𝜃𝜃,𝑢𝑢, 𝑥𝑥)�𝐻𝐻(𝑣𝑣)𝑑𝑑𝑣𝑣
ℝ

 

hence one can write, because of (H2) and (H5): 

 𝐼𝐼 =  
1
𝔼𝔼𝐾𝐾1

𝔼𝔼�𝑝𝑝(𝑥𝑥,𝜃𝜃)𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�𝐻𝐻(𝑣𝑣)�𝑓𝑓(𝜃𝜃,𝑦𝑦 − 𝑣𝑣𝑔𝑔𝑛𝑛,𝑋𝑋1) − 𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�𝑑𝑑𝑣𝑣
ℝ

� 

 ≤ 𝐶𝐶𝜃𝜃,𝑥𝑥(𝑝𝑝(𝑥𝑥,𝜃𝜃) + 𝑙𝑙(1))�𝐻𝐻(𝑣𝑣)�ℎ𝑛𝑛
𝛼𝛼1 + |𝑣𝑣|𝛼𝛼2𝑔𝑔𝑛𝑛

𝛼𝛼2�𝑑𝑑𝑣𝑣
ℝ

≤ 𝒪𝒪�ℎ𝑛𝑛
𝛼𝛼1 + 𝑔𝑔𝑛𝑛

𝛼𝛼2�. 

Finally, the proof is achieved. 
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Lemma 3.2. Under the assumptions of Theorem 3.1: 

1. 𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

�𝑓𝑓𝐷𝐷(𝜃𝜃, 𝑥𝑥) − 𝑝𝑝(𝜃𝜃, 𝑥𝑥)� = 𝒪𝒪𝑎𝑎.𝑐𝑐𝑙𝑙. ��
𝑙𝑙𝑙𝑙𝑔𝑔𝑑𝑑𝑛𝑛

𝑆𝑆ℋ𝑑𝑑𝑛𝑛
𝛩𝛩ℋ

𝑛𝑛𝜙𝜙(ℎ𝑛𝑛)
�. 

2. ∑ ℙ�𝑓𝑓D(𝜃𝜃, 𝑥𝑥) < 1 2⁄ �𝑛𝑛≥1 < ∞. 

Proof.  To demonstrate the first part of this lemma, and following a similar methodology as shown in 
the proof of Lemma 4.4 in (Kadiri et al., 2018), the proof can be readily completed. However, for the 
sake of brevity, the authors omitted the detailed proof in this context. 

For the proof of the second part, one only needed to establish 𝔼𝔼𝑓𝑓D(𝜃𝜃, 𝑥𝑥)
𝑛𝑛→∞
�⎯⎯�  𝑝𝑝(𝑥𝑥,𝜃𝜃) 𝑎𝑎. 𝑐𝑐𝑙𝑙.  

By the properties of conditional expectation and the mechanism of MAR and (H6), it follows that: 

 
𝔼𝔼𝑓𝑓D(𝜃𝜃, 𝑥𝑥) =

1
𝑛𝑛𝔼𝔼�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�

�𝔼𝔼�𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖(𝜃𝜃, 𝑥𝑥)�
𝑛𝑛

𝑖𝑖=1

 =
1

𝑛𝑛𝔼𝔼�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�
�𝔼𝔼[𝔼𝔼(𝛿𝛿𝑖𝑖| <  𝜃𝜃,𝑋𝑋𝑖𝑖 >)𝐾𝐾𝑖𝑖(𝜃𝜃, 𝑥𝑥)]
𝑛𝑛

𝑖𝑖=1

 =
(𝑝𝑝(𝑥𝑥,𝜃𝜃) + 𝑙𝑙(1))
𝑛𝑛𝔼𝔼�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�

�𝔼𝔼�𝐾𝐾𝑖𝑖(𝜃𝜃, 𝑥𝑥)�
𝑛𝑛→∞
�⎯⎯�𝑝𝑝(𝑥𝑥,𝜃𝜃) 𝑎𝑎. 𝑐𝑐𝑙𝑙.

𝑛𝑛

𝑖𝑖=1

  

Therefore (2) of Lemma 3.4 follows from (1) and because 𝑓𝑓D(𝜃𝜃, 𝑥𝑥)
𝑛𝑛→∞
�⎯⎯�  𝑝𝑝(𝑥𝑥, 𝜃𝜃) 𝑎𝑎. 𝑐𝑐𝑙𝑙. 

Concerning the last part, one has 

  �𝑓𝑓D(𝜃𝜃, 𝑥𝑥) < 𝑝𝑝(𝑥𝑥,𝜃𝜃) 2⁄ � ⊆ ��𝑓𝑓D(𝜃𝜃, 𝑥𝑥) − 𝑝𝑝(𝑥𝑥,𝜃𝜃)� > 𝑝𝑝(𝑥𝑥,𝜃𝜃) 2⁄ � ⇒
ℙ�𝑓𝑓D(𝜃𝜃, 𝑥𝑥) < 𝑝𝑝(𝑥𝑥,𝜃𝜃) 2⁄ � ≤ ℙ��𝑓𝑓D(𝜃𝜃, 𝑥𝑥) − 𝑝𝑝(𝑥𝑥,𝜃𝜃)� > 𝑝𝑝(𝑥𝑥,𝜃𝜃) 2⁄ �

≤ ℙ��𝑓𝑓D(𝜃𝜃, 𝑥𝑥) − 𝔼𝔼𝑓𝑓D(𝜃𝜃, 𝑥𝑥)� > 1 2⁄ �,
  

because lim
𝑛𝑛→∞

𝑓𝑓D(𝜃𝜃, 𝑥𝑥) = 𝑝𝑝(𝑥𝑥,𝜃𝜃), hence   

�ℙ�𝑓𝑓D(𝜃𝜃, 𝑥𝑥) < 𝑝𝑝(𝑥𝑥,𝜃𝜃) 2⁄ �
𝑛𝑛≥1

< ∞. 

Lemma 3.3. Considering the assumptions of Theorem 3.1: 

𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃𝑦𝑦∈𝑆𝑆ℝ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

�𝑓𝑓𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝔼𝔼�𝑓𝑓𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�� = 𝒪𝒪𝑎𝑎.𝑐𝑐𝑙𝑙. ��
𝑙𝑙𝑙𝑙𝑔𝑔 𝑑𝑑𝑛𝑛

𝑆𝑆ℋ𝑑𝑑𝑛𝑛
𝛩𝛩ℋ

𝑛𝑛𝑔𝑔𝑛𝑛2𝜙𝜙(ℎ𝑛𝑛)
�. 

Proof. For all 𝑥𝑥 ∈ 𝑆𝑆ℋ and ∀𝜃𝜃 ∈ Θℋ, it was set 

𝑘𝑘(𝑥𝑥) = arg  min
𝑘𝑘∈�1,⋯,𝑑𝑑𝑛𝑛

𝑆𝑆ℋ�
‖𝑥𝑥 − 𝑥𝑥𝑘𝑘‖ , 𝑗𝑗(𝜃𝜃) = arg min

�1,⋯,𝑑𝑑𝑛𝑛
𝛩𝛩ℋ�

�𝜃𝜃 − 𝑡𝑡𝑗𝑗� 

and by the compact property of 𝑆𝑆ℝ ⊂ ℝ, one obtains  𝑆𝑆ℝ ⊂ ⋃ (𝑦𝑦𝑚𝑚 − 𝑙𝑙𝑛𝑛,𝑦𝑦𝑚𝑚 + 𝑙𝑙𝑛𝑛) 𝜏𝜏𝑛𝑛
𝑚𝑚=1 with 𝑙𝑙𝑛𝑛 and 𝜏𝜏𝑛𝑛 

can be chosen such that  𝑙𝑙𝑛𝑛 = 𝒪𝒪(𝜏𝜏𝑛𝑛−1) = 𝒪𝒪�𝑛𝑛−(3𝜈𝜈+1) 2⁄ �.  In the context of abstract semi-metric spaces, 
it is usually assumed that  𝑑𝑑𝑛𝑛

𝑆𝑆ℋ𝑟𝑟𝑛𝑛 (𝑑𝑑𝑛𝑛
𝛩𝛩ℋ𝑟𝑟𝑛𝑛)  is bounded. For more discussion, refer to Ferraty and Vieu 

(2006). Taking 𝑘𝑘(𝑦𝑦) = arg min
𝑘𝑘∈{1,⋯,𝜏𝜏𝑛𝑛}

|𝑦𝑦 − 𝑦𝑦𝑘𝑘|. Let us consider the following decomposition 
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Λ�𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥) = 𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃𝑦𝑦∈𝑆𝑆ℝ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

�𝑓𝑓𝑁𝑁(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)− 𝔼𝔼�𝑓𝑓𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥)��

≤ 𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃𝑦𝑦∈𝑆𝑆ℝ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

�𝑓𝑓𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝑓𝑓𝑁𝑁�𝜃𝜃,𝑦𝑦, 𝑥𝑥𝑘𝑘(𝑥𝑥)��

+ 𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃𝑦𝑦∈𝑆𝑆ℝ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

�𝑓𝑓𝑁𝑁�𝜃𝜃,𝑦𝑦, 𝑥𝑥𝑘𝑘(𝑥𝑥)� − 𝑓𝑓𝑁𝑁�𝑡𝑡𝑗𝑗(𝜃𝜃),𝑦𝑦, 𝑥𝑥𝑘𝑘(𝑥𝑥)��

 

+ 𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃𝑦𝑦∈𝑆𝑆ℝ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

�𝑓𝑓𝑁𝑁�𝑡𝑡𝑗𝑗(𝜃𝜃),𝑦𝑦, 𝑥𝑥𝑘𝑘(𝑥𝑥)� − 𝑓𝑓𝑁𝑁�𝑡𝑡𝑗𝑗(𝜃𝜃),𝑦𝑦𝑚𝑚(𝑦𝑦),𝑥𝑥𝑘𝑘(𝑥𝑥)��

+ 𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃𝑦𝑦∈𝑆𝑆ℝ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

�𝑓𝑓𝑁𝑁�𝑡𝑡𝑗𝑗(𝜃𝜃),𝑦𝑦𝑚𝑚(𝑦𝑦),𝑥𝑥𝑘𝑘(𝑥𝑥)� − 𝔼𝔼 �𝑓𝑓𝑁𝑁�𝑡𝑡𝑗𝑗(𝜃𝜃),𝑦𝑦𝑚𝑚(𝑦𝑦), 𝑥𝑥𝑘𝑘(𝑥𝑥)���

+ 𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃𝑦𝑦∈𝑆𝑆ℝ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

�𝔼𝔼 �𝑓𝑓𝑁𝑁�𝑡𝑡𝑗𝑗(𝜃𝜃),𝑦𝑦𝑚𝑚(𝑦𝑦),𝑥𝑥𝑘𝑘(𝑥𝑥)�� − 𝔼𝔼 �𝑓𝑓𝑁𝑁�𝑡𝑡𝑗𝑗(𝜃𝜃),𝑦𝑦, 𝑥𝑥𝑘𝑘(𝑥𝑥)���

 

+ 𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃𝑦𝑦∈𝑆𝑆ℝ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

�𝔼𝔼 �𝑓𝑓𝑁𝑁�𝑡𝑡𝑗𝑗(𝜃𝜃),𝑦𝑦, 𝑥𝑥𝑘𝑘(𝑥𝑥)�� − 𝔼𝔼 �𝑓𝑓𝑁𝑁�𝜃𝜃,𝑦𝑦, 𝑥𝑥𝑘𝑘(𝑥𝑥)���

+ 𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃𝑦𝑦∈𝑆𝑆ℝ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

�𝔼𝔼 �𝑓𝑓𝑁𝑁�𝜃𝜃,𝑦𝑦, 𝑥𝑥𝑘𝑘(𝑥𝑥)�� − 𝔼𝔼 �𝑓𝑓𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥)��

≤ 𝐷𝐷1 + 𝐷𝐷2 + 𝐷𝐷3 + 𝐷𝐷4 + 𝐷𝐷5 + 𝐷𝐷6 + 𝐷𝐷7.

 

• Concerning 𝐷𝐷3 and 𝐷𝐷5 by satisfying conditions (H2)-(ii) and (H7), as well as the boundedness of 𝐾𝐾, 
one obtains 

�𝑓𝑓𝑁𝑁�𝑡𝑡𝑗𝑗(𝜃𝜃),𝑦𝑦, 𝑥𝑥𝑘𝑘(𝑥𝑥)� − 𝑓𝑓𝑁𝑁�𝑡𝑡𝑗𝑗(𝜃𝜃),𝑦𝑦𝑘𝑘(𝑦𝑦), 𝑥𝑥𝑘𝑘(𝑥𝑥)�� ≤
1

𝑛𝑛𝑔𝑔𝑛𝑛𝔼𝔼�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�
𝑠𝑠𝑢𝑢𝑝𝑝
𝑡𝑡∈𝑆𝑆ℝ

��𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖�𝑡𝑡𝑗𝑗(𝜃𝜃),𝑥𝑥𝑘𝑘(𝑥𝑥)��
𝑛𝑛

𝑖𝑖=1

+ �𝐻𝐻�𝑔𝑔𝑛𝑛−1(𝑦𝑦 − 𝑌𝑌𝑖𝑖)�𝛿𝛿𝑖𝑖𝐻𝐻 �𝑔𝑔𝑛𝑛−1�𝑦𝑦𝑚𝑚(𝑦𝑦) − 𝑌𝑌𝑖𝑖���

≤ sup𝐶𝐶
𝑦𝑦∈𝑆𝑆ℝ

�𝑦𝑦 − 𝑦𝑦𝑚𝑚(𝑦𝑦)�
𝑔𝑔𝑛𝑛2

�
∑ �𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖�𝑡𝑡𝑗𝑗(𝜃𝜃),𝑥𝑥𝑘𝑘(𝑥𝑥)��𝑛𝑛
𝑖𝑖=1

𝑛𝑛𝔼𝔼 �𝐾𝐾1�𝑡𝑡𝑗𝑗(𝜃𝜃), 𝑥𝑥𝑘𝑘(𝑥𝑥)��
� ≤

𝐶𝐶𝑙𝑙𝑛𝑛
𝑔𝑔𝑛𝑛2𝜙𝜙(ℎ𝑛𝑛)

= 𝒪𝒪 �
𝑙𝑙𝑛𝑛

𝑔𝑔𝑛𝑛2𝜙𝜙(ℎ𝑛𝑛)
� .

 

Now, the fact that lim
𝑛𝑛→∞

𝑛𝑛𝜈𝜈𝑔𝑔𝑛𝑛
2 = ∞, and choosing 𝑙𝑙𝑛𝑛 = 𝑛𝑛−(3𝜈𝜈+1) 2⁄  and employing the second part of 

(H7), as 𝑛𝑛 → ∞, it follows that 

𝑙𝑙𝑛𝑛
𝑔𝑔𝑛𝑛2𝜙𝜙(ℎ𝑛𝑛)

= 𝑙𝑙 ��
𝑙𝑙𝑙𝑙𝑔𝑔 𝑛𝑛

𝑛𝑛𝑔𝑔𝑛𝑛2𝜙𝜙(ℎ𝑛𝑛)
� ,   𝐷𝐷5 ≤ 𝐷𝐷3 = 𝒪𝒪𝑎𝑎.𝑐𝑐𝑙𝑙. ��

𝑙𝑙𝑙𝑙𝑔𝑔 𝑑𝑑𝑛𝑛
𝑆𝑆ℋ𝑑𝑑𝑛𝑛

𝛩𝛩ℋ

𝑛𝑛𝑔𝑔𝑛𝑛2𝜙𝜙(ℎ𝑛𝑛)
�. 

Concerning 𝐷𝐷4 let us consider 𝜀𝜀 = 𝜀𝜀0�
𝑙𝑙𝑙𝑙𝑔𝑔𝑑𝑑𝑛𝑛

𝑆𝑆ℋ𝑑𝑑𝑛𝑛
𝛩𝛩ℋ

𝑛𝑛𝑔𝑔𝑛𝑛2𝜙𝜙(ℎ𝑛𝑛)
.  Since 

ℙ�𝐷𝐷4 > 𝜀𝜀0�
𝑙𝑙𝑙𝑙𝑔𝑔 𝑑𝑑𝑛𝑛

𝑆𝑆ℋ𝑑𝑑𝑛𝑛
𝛩𝛩ℋ

𝑛𝑛𝑔𝑔𝑛𝑛2𝜙𝜙(ℎ𝑛𝑛)
� ≤ ℙ� max

𝑗𝑗∈�1,⋯,𝑑𝑑𝑛𝑛
𝛩𝛩ℋ�

max
𝑘𝑘∈�1,⋯,𝑑𝑑𝑛𝑛

𝑆𝑆ℋ�
max

𝑠𝑠∈{1,⋯,𝜏𝜏𝑛𝑛}
|Σ𝑖𝑖 − 𝔼𝔼Σ𝑖𝑖| > 𝜀𝜀�

                                                                         ≤ 𝜏𝜏𝑛𝑛𝑑𝑑𝑛𝑛
𝑆𝑆ℋ𝑑𝑑𝑛𝑛

𝛩𝛩ℋ  ℙ(|Σ𝑖𝑖 − 𝔼𝔼Σ𝑖𝑖| > 𝜀𝜀).

 

Applying Bernstein’s exponential inequality, under (H2) and (H5), to get 

∀𝑗𝑗 ≤ 𝑑𝑑𝑛𝑛
𝛩𝛩ℋ , ∀𝑘𝑘 ≤ 𝑑𝑑𝑛𝑛

𝑆𝑆ℋ  and ∀𝑠𝑠 ≤ 𝜏𝜏𝑛𝑛, 

ℙ(|Σ𝑖𝑖 − 𝔼𝔼Σ𝑖𝑖| > 𝜀𝜀) ≤ 2�𝑑𝑑𝑛𝑛
𝑆𝑆ℋ𝑑𝑑𝑛𝑛

𝛩𝛩ℋ�
−𝐶𝐶𝜀𝜀02 . 

Choosing 𝜏𝜏𝑛𝑛 ≤ 𝐶𝐶𝑛𝑛(3𝜈𝜈+1) 2⁄ , one obtains  

ℙ(𝐷𝐷4 > 𝜀𝜀) ≤ 𝐶𝐶�𝑑𝑑𝑛𝑛
𝑆𝑆ℋ𝑑𝑑𝑛𝑛

𝛩𝛩ℋ�
1−𝐶𝐶𝜀𝜀0

2

. 
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Putting 𝐶𝐶𝜀𝜀02 = 𝜉𝜉 and using (H7), one obtains  

 
𝐷𝐷4 = 𝒪𝒪𝑎𝑎.𝑐𝑐𝑙𝑙. ��

𝑙𝑙𝑙𝑙𝑔𝑔𝑑𝑑𝑛𝑛
𝑆𝑆ℋ𝑑𝑑𝑛𝑛

𝛩𝛩ℋ

𝑛𝑛𝑔𝑔𝑛𝑛2𝜙𝜙(ℎ𝑛𝑛)
�. (3.2) 

• Concerning 𝐷𝐷1 and 𝐷𝐷2 

𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

�𝑓𝑓𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝑓𝑓𝑁𝑁�𝜃𝜃,𝑦𝑦, 𝑥𝑥𝑘𝑘(𝑥𝑥)�� ≤

1
𝑛𝑛𝑔𝑔𝑛𝑛𝔼𝔼�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�

𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

sup
𝑦𝑦∈𝑆𝑆ℝ

��𝛿𝛿𝑖𝑖 �𝐾𝐾𝑖𝑖(𝜃𝜃, 𝑥𝑥) − 𝐾𝐾𝑖𝑖�𝜃𝜃, 𝑥𝑥𝑘𝑘(𝑥𝑥)��� |𝐻𝐻𝑖𝑖(𝑦𝑦)|
𝑛𝑛

𝑖𝑖=1

≤
𝐶𝐶

𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙(ℎ𝑛𝑛)
sup
𝜃𝜃∈Θℋ

sup
𝑥𝑥∈𝑆𝑆ℋ

��Ψ𝑖𝑖(𝜃𝜃, 𝑥𝑥) −Ψ𝑖𝑖�𝜃𝜃, 𝑥𝑥𝑘𝑘(𝑥𝑥)��
𝑛𝑛

𝑖𝑖=1

 

≤
1

𝑔𝑔𝑛𝑛𝜙𝜙(ℎ𝑛𝑛)
sup
𝜃𝜃∈Θℋ

sup
𝑥𝑥∈𝑆𝑆ℋ

1
𝑛𝑛
�1𝐵𝐵𝜃𝜃(𝑥𝑥,ℎ)∪𝐵𝐵𝜃𝜃(𝑥𝑥𝑘𝑘(𝑥𝑥),ℎ)(𝑋𝑋𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

≤
𝐶𝐶
𝑔𝑔𝑛𝑛

sup
𝜃𝜃∈Θℋ

sup
𝑥𝑥∈𝑆𝑆ℋ

1
𝑛𝑛
�Υ𝑖𝑖(𝜃𝜃, 𝑥𝑥)
𝑛𝑛

𝑖𝑖=1

.

 

Therefore, similarly to the arguments for (3.2), one can obtain 

𝐷𝐷1 = 𝒪𝒪𝑎𝑎.𝑐𝑐𝑙𝑙. ��
𝑙𝑙𝑙𝑙𝑔𝑔𝑑𝑑𝑛𝑛

𝑆𝑆ℋ𝑑𝑑𝑛𝑛
𝛩𝛩ℋ

𝑛𝑛𝑔𝑔𝑛𝑛2𝜙𝜙(ℎ𝑛𝑛)
�. 

𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝑓𝑓𝑁𝑁�𝜃𝜃,𝑦𝑦, 𝑥𝑥𝑘𝑘(𝑥𝑥)� − 𝑓𝑓𝑁𝑁�𝑡𝑡𝑗𝑗(𝜃𝜃),𝑦𝑦, 𝑥𝑥𝑘𝑘(𝑥𝑥)�� ≤

𝑔𝑔𝑛𝑛−1

𝑛𝑛𝔼𝔼�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�
𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

sup
𝑦𝑦∈𝑆𝑆ℝ

� �𝛿𝛿𝑖𝑖 �𝐾𝐾𝑖𝑖�𝜃𝜃, 𝑥𝑥𝑘𝑘(𝑥𝑥)� − 𝐾𝐾𝑖𝑖�𝑡𝑡𝑗𝑗(𝜃𝜃), 𝑥𝑥𝑘𝑘(𝑥𝑥)��� |𝐻𝐻𝑖𝑖(𝑦𝑦)|
𝑛𝑛

𝑘𝑘=1

≤
𝐶𝐶′𝑔𝑔𝑛𝑛−1

𝜙𝜙(ℎ𝑛𝑛)
sup
𝜃𝜃∈Θℋ

sup
𝑥𝑥∈𝑆𝑆ℋ

1
𝑛𝑛
��Ψ𝑖𝑖�𝜃𝜃, 𝑥𝑥𝑘𝑘(𝑥𝑥)� − Ψ𝑖𝑖�𝑡𝑡𝑗𝑗(𝜃𝜃), 𝑥𝑥𝑘𝑘(𝑥𝑥)��
𝑛𝑛

𝑖𝑖=1

 

≤
𝐶𝐶′

𝑔𝑔𝑛𝑛𝜙𝜙(ℎ𝑛𝑛)
sup
𝜃𝜃∈Θℋ

sup
𝑥𝑥∈𝑆𝑆ℋ

1
𝑛𝑛
�1𝐵𝐵𝜃𝜃(𝑥𝑥𝑘𝑘(𝑥𝑥),ℎ)∪𝐵𝐵𝑡𝑡𝑗𝑗(𝜃𝜃)(𝑥𝑥𝑘𝑘(𝑥𝑥),ℎ)(𝑋𝑋𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

𝐶𝐶′
𝑔𝑔𝑛𝑛

sup
𝜃𝜃∈Θℋ

sup
𝑥𝑥∈𝑆𝑆ℋ

1
𝑛𝑛
�Ω𝑖𝑖(𝜃𝜃, 𝑥𝑥)
𝑛𝑛

𝑖𝑖=1

.

 

Similarly to the deductions of (3.2), this results in 

𝐷𝐷2 = 𝒪𝒪𝑎𝑎.𝑐𝑐𝑙𝑙. ��
𝑙𝑙𝑙𝑙𝑔𝑔𝑑𝑑𝑛𝑛

𝑆𝑆ℋ𝑑𝑑𝑛𝑛
𝛩𝛩ℋ

𝑛𝑛𝑔𝑔𝑛𝑛2𝜙𝜙(ℎ𝑛𝑛)
�. 

On the other hand, since 𝐷𝐷7 ≤ 𝐷𝐷1 and 𝐷𝐷6 ≤ 𝐷𝐷2, it also leads to 

𝐷𝐷6 = 𝒪𝒪𝑎𝑎.𝑐𝑐𝑙𝑙. ��
𝑙𝑙𝑙𝑙𝑔𝑔 𝑑𝑑𝑛𝑛

𝑆𝑆ℋ𝑑𝑑𝑛𝑛
𝛩𝛩ℋ

𝑛𝑛𝑔𝑔𝑛𝑛2𝜙𝜙(ℎ𝑛𝑛)
�  and 𝐷𝐷7 = 𝒪𝒪𝑎𝑎.𝑐𝑐𝑙𝑙. ��

𝑙𝑙𝑙𝑙𝑔𝑔𝑑𝑑𝑛𝑛
𝑆𝑆ℋ𝑑𝑑𝑛𝑛

𝛩𝛩ℋ

𝑛𝑛𝑔𝑔𝑛𝑛2𝜙𝜙(ℎ𝑛𝑛)
�. 

Then the proof of Lemma 3.3 can be concluded. 
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The authors concluded the proof of the Theorem 3.1 by making use of the inequality (3.1), in 
conjunction with Lemma 3.1 to Lemma 3.3. 

3.3. Conditional Mode Estimation 

In this part, the study rated convergence of the conditional mode estimator  𝑀𝑀�𝜃𝜃(𝑥𝑥) . Obviously, 
obtaining these results required more sophisticated technical developments than those presented 
previously. To ensure greater clarity, the authors introduced conditions related to the flatness of the 
cond-df  𝑓𝑓(𝜃𝜃, . , 𝑥𝑥) around the conditional quantile 𝑀𝑀𝜃𝜃(𝑥𝑥).  

Then a natural estimator of conditional mode 𝑀𝑀𝜃𝜃(𝑥𝑥) was defined as, 

𝑀𝑀�𝜃𝜃(𝑥𝑥) = arg 𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝒮𝒮ℝ

𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥), 

where 𝑀𝑀𝜃𝜃(𝑥𝑥) = arg 𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝒮𝒮ℝ

𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥), 𝒮𝒮ℝ was a fixed compact subset of ℝ. 

However, a complementary way to take this local shape constraint into account was to suppose that:  

(H8)  Conditional density 𝑓𝑓(𝜃𝜃, . , 𝑥𝑥) satisfies: 

(i) ∃𝜖𝜖0, such that 𝑓𝑓(𝜃𝜃, . , 𝑥𝑥) is strictly increasing on �𝑀𝑀𝜃𝜃(𝑥𝑥)− 𝜖𝜖0,𝑀𝑀𝜃𝜃(𝑥𝑥)� and strictly decreasing on 
(𝑀𝑀𝜃𝜃(𝑥𝑥),𝑀𝑀𝜃𝜃(𝑥𝑥) + 𝜖𝜖0), with respect to 𝑥𝑥. 

(ii) 𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)  is twice continuously differentiable around point 𝑀𝑀𝜃𝜃(𝑥𝑥) with 𝑓𝑓(1)(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥), 𝑥𝑥) = 0 , 
and 𝑓𝑓(2)(𝜃𝜃, . , 𝑥𝑥) is uniformly continuous on 𝑆𝑆ℝ such that 𝑓𝑓(2)(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥), 𝑥𝑥)  ≠  0, where f(j)(θ,·,x) 
(j = 1,2) is the j-th order derivative of conditional density 𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥). 

(H9) ∀ε > 0, ∃η > 0, ∀𝜑𝜑  

|𝑀𝑀𝜃𝜃(𝑥𝑥) –  𝜑𝜑(𝑥𝑥)| ≥  𝜀𝜀 ⇒  |𝑓𝑓(𝜃𝜃,𝜑𝜑(𝑥𝑥), 𝑥𝑥) −  𝑓𝑓(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥)| ≥  𝜂𝜂. 

The difficulty of the problem is naturally linked with the flatness of the function 𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥) around 
mode 𝑀𝑀𝜃𝜃. This flatness can be controlled by the number of vanishing derivatives at point 𝑀𝑀𝜃𝜃, and this 
parameter would also have a great influence on the asymptotic rates of the estimates; more precisely, 
the following additional smoothness condition was introduced. 

(H10) There exists a certain integer 𝑗𝑗 > 1 such that ∀𝑥𝑥, and function 𝑓𝑓(𝜃𝜃, . , 𝑥𝑥) is 𝑗𝑗-times continuously 
differentiable w.r.t  𝑦𝑦 on 𝑆𝑆ℝ with 

 �
𝑓𝑓(𝑗𝑗)(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥) = 0,         𝑖𝑖𝑓𝑓; 1 ≤ 𝑗𝑗 < 𝑙𝑙 

𝑓𝑓(𝑗𝑗)(𝜃𝜃, . , 𝑥𝑥)  is uniformly continuous on 𝑆𝑆ℝ 
such that          𝑓𝑓(𝑗𝑗)(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥) ≠ 0.

 

Proposition 3.1. Under the assumptions of Theorem 3.1, one has  

𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝒮𝒮ℝ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

�𝑀𝑀�𝜃𝜃(𝛾𝛾, 𝑥𝑥) −𝑀𝑀𝜃𝜃(𝛾𝛾, 𝑥𝑥)� = 𝒪𝒪 ��ℎ𝑛𝑛
𝛼𝛼1 + 𝑔𝑔𝑛𝑛

𝛼𝛼2�
1
𝑗𝑗�

  
 + 𝒪𝒪𝑎𝑎.𝑐𝑐𝑙𝑙. ��

𝑙𝑙𝑙𝑙𝑔𝑔𝑑𝑑𝑛𝑛
𝑆𝑆ℋ𝑑𝑑𝑛𝑛

𝛩𝛩ℋ

𝑛𝑛𝑔𝑔𝑛𝑛2𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
�

1
2𝑗𝑗
�. 

Proof. The proof is based on the Taylor expansion of  𝑓𝑓(𝜃𝜃, . , 𝑥𝑥) in the neighbourhood of 𝑀𝑀𝜃𝜃(𝛾𝛾, 𝑥𝑥), 
obtaining  

𝑓𝑓�𝜃𝜃,𝑀𝑀�𝜃𝜃(𝑥𝑥), 𝑥𝑥� = 𝑓𝑓(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥) +
𝑓𝑓(𝑗𝑗)(𝜃𝜃,𝑀𝑀𝜃𝜃

∗(𝑥𝑥), 𝑥𝑥)
𝑗𝑗!

�𝑀𝑀�𝜃𝜃(𝑥𝑥)−𝑀𝑀𝜃𝜃(𝑥𝑥)�
𝑗𝑗
, 

where 𝑀𝑀𝜃𝜃
∗(𝑥𝑥) is between 𝑀𝑀𝜃𝜃(𝑥𝑥) and 𝑀𝑀�𝜃𝜃(𝑥𝑥), combining the last equality with the fact that 
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�𝑓𝑓�𝜃𝜃,𝑀𝑀�𝜃𝜃(𝑥𝑥), 𝑥𝑥� −  𝑓𝑓(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥), 𝑥𝑥)� ≤ 2 𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

� 𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥) −  𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�, 

allowing to write: 

�𝑀𝑀𝜃𝜃(𝑥𝑥) −𝑀𝑀�𝜃𝜃(𝑥𝑥)�𝑗𝑗 ≤
𝑗𝑗!

𝑓𝑓(𝑗𝑗)�𝜃𝜃,𝑀𝑀𝜃𝜃
∗(𝑥𝑥),𝑥𝑥�

𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

� 𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥) −  𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�. 

Using the second part of (H8), one obtains 

∃𝛿𝛿 > 0,�ℙ�𝑓𝑓(𝑗𝑗)(𝜃𝜃,𝑀𝑀𝜃𝜃
∗(𝑥𝑥),𝑥𝑥) ≥ 𝛿𝛿� < ∞.

𝑛𝑛≥1

 

Thus, one would obtain 

�𝑀𝑀�𝜃𝜃(𝛾𝛾, 𝑥𝑥) −𝑀𝑀𝜃𝜃(𝛾𝛾, 𝑥𝑥)�𝑗𝑗 = 𝒪𝒪𝑎𝑎.𝑐𝑐𝑙𝑙. �𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

� 𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥) −  𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)��. 

Finally, Proposition 3.1 can be deduced from Theorem 3.1. 

Corollary 3.1. Under the hypotheses of Theorem 3.1, one has  

  𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝒮𝒮ℝ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

 �𝑀𝑀�𝜃𝜃(𝑥𝑥)−𝑀𝑀𝜃𝜃(𝑥𝑥)�
𝑛𝑛→∞
�⎯⎯�0, 𝑎𝑎. 𝑐𝑐𝑙𝑙. 

Proof. The proof was based on the point-wise convergence of 𝑓𝑓(𝜃𝜃, . , 𝑥𝑥) and the Lipschitz property 
introduced in (H2)-(i) and hypothesis (H9), where 𝑓𝑓(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) is a continuous function. Thus: 

∀ 𝜖𝜖 > 0,∃𝜂𝜂(𝜖𝜖) > 0, such that 

�𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥) −  𝑓𝑓(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥), 𝑥𝑥)� ≤  𝜂𝜂(𝜖𝜖)  ⇒ |𝑦𝑦 −  𝑀𝑀𝜃𝜃(𝑥𝑥)| ≤ 𝜖𝜖. 

Therefore, for 𝑦𝑦 = 𝑀𝑀�𝜃𝜃(𝑥𝑥), 

 ℙ��𝑀𝑀�𝜃𝜃(𝑥𝑥)−𝑀𝑀𝜃𝜃(𝑥𝑥)� >  𝜖𝜖� ≤ ℙ��𝑓𝑓�𝜃𝜃,𝑀𝑀�𝜃𝜃(𝑥𝑥),𝑥𝑥� − 𝑓𝑓(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥), 𝑥𝑥)� ≥  𝜂𝜂(𝜖𝜖)�. (3.2) 

Then, according to theorem, 𝑀𝑀�𝜃𝜃 −𝑀𝑀𝜃𝜃 go almost completely to 0, as n goes to infinity. 

4. Asymptotic Normality 

The asymptotic normality of the semi-parametric estimators of the conditional mode for functional 
data in the Single Index Model (SIM) with missing data at random (MAR) is an important property that 
establishes the limiting distribution of the estimators as the sample size increases. Although specific 
results may vary depending on the assumptions and estimation methods used, it allows to construct 
confidence intervals and hypothesis tests for the estimated mode. In this section, the asymptotic 
normality of estimator 𝑓𝑓(𝜃𝜃, . , 𝑥𝑥) in the single functional index model was established. 

(N1) There exists function βθ,x(·) such that lim
𝑛𝑛→∞

𝜙𝜙𝜃𝜃,𝑥𝑥(𝑠𝑠ℎ𝑛𝑛)  
𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛) = 𝛽𝛽𝜃𝜃,𝑥𝑥(𝑠𝑠), for ∀s∈ [0,1]. 

(N2) Bandwidth ℎ𝑛𝑛  and 𝑔𝑔𝑛𝑛, small ball probability 𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛) satisfying  

(i) 𝑛𝑛𝑔𝑔𝑛𝑛 
3 𝜙𝜙𝜃𝜃,𝑥𝑥

3 (ℎ𝑛𝑛) ⟶  0 and 𝑛𝑛𝑔𝑔𝑛𝑛 
3 𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛) log𝑛𝑛  

log2 𝑛𝑛
⟶ ∞, 𝑎𝑎𝑠𝑠 𝑛𝑛 → ∞. 

(ii) 𝑛𝑛𝑔𝑔𝑛𝑛2𝜙𝜙𝜃𝜃,𝑥𝑥
3 (ℎ𝑛𝑛) ⟶  0,𝑎𝑎𝑠𝑠 𝑛𝑛 → ∞. 

(N3) The conditional density f(θ,y,x) satisfies: ∃𝛼𝛼 > 0, ∀(𝑦𝑦1,𝑦𝑦2)  ∈ 𝑆𝑆ℝ × 𝑆𝑆ℝ,   

�𝑓𝑓(𝑗𝑗)(𝜃𝜃,𝑦𝑦1, 𝑥𝑥1) − 𝑓𝑓(𝑗𝑗)(𝜃𝜃,𝑦𝑦2, 𝑥𝑥2)� ≤ 𝐶𝐶(|𝑦𝑦1 − 𝑦𝑦2|𝛼𝛼), 𝑗𝑗 = 1,2. 
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Theorem 4.1 Under the assumptions of Theorem 3.1 and (N1)-(N3) for all 𝑥𝑥 ∈ ℋ, and in addition if  

�𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)�ℎ𝑛𝑛
𝛼𝛼1 + 𝑔𝑔𝑛𝑛

𝛼𝛼2�
𝑛𝑛→∞
�⎯⎯� 0, 

then one has 

�
𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
𝜎𝜎2(𝜃𝜃,𝑦𝑦, 𝑥𝑥) �𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�

     𝒟𝒟      
�⎯⎯⎯�𝒩𝒩(0,1), 

where 𝜎𝜎2(𝜃𝜃,𝑦𝑦, 𝑥𝑥) = 𝑀𝑀2(𝜃𝜃,𝑥𝑥)
(𝑀𝑀1(𝜃𝜃,𝑥𝑥))2

𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑥𝑥)
𝑝𝑝(𝜃𝜃,𝑥𝑥) ∫𝐻𝐻

2(𝑢𝑢)𝑑𝑑𝑢𝑢  with 𝑀𝑀𝑙𝑙(𝜃𝜃, 𝑥𝑥) = 𝐾𝐾𝑙𝑙(1)− ∫ �𝐾𝐾𝑙𝑙�′(𝑢𝑢)1
0 𝛽𝛽𝜃𝜃,𝑥𝑥(𝑢𝑢)𝑑𝑑𝑢𝑢, 

𝑙𝑙 = 1, 2, 
     𝒟𝒟      
�⎯⎯⎯� means the convergence in distribution.  

Proof. 

In order to establish the asymptotic normality of 𝑓𝑓(𝜃𝜃, 𝑡𝑡, 𝑥𝑥), further notations and definitions were 
needed. First, consider the following decomposition 

𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥) =
𝑓𝑓𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥)
𝑓𝑓D(𝜃𝜃, 𝑥𝑥)

−
𝑀𝑀1(𝜃𝜃, 𝑥𝑥)𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)

𝑀𝑀1(𝜃𝜃, 𝑥𝑥) =
1

𝑓𝑓D(𝜃𝜃, 𝑥𝑥)
�𝑓𝑓𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝔼𝔼𝑓𝑓𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�

−
1

𝑓𝑓D(𝜃𝜃, 𝑥𝑥)
�𝑀𝑀1(𝜃𝜃, 𝑥𝑥)𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝔼𝔼𝑓𝑓𝑁𝑁(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)�  +

𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)
𝑓𝑓D(𝜃𝜃, 𝑥𝑥)

�𝑀𝑀1(𝜃𝜃, 𝑥𝑥) − 𝔼𝔼𝐹𝐹�𝐷𝐷(𝜃𝜃, 𝑥𝑥)�

−
𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)
𝑓𝑓D(𝜃𝜃, 𝑥𝑥)

�𝐹𝐹�𝐷𝐷(𝜃𝜃, 𝑥𝑥) − 𝔼𝔼𝐹𝐹�𝐷𝐷(𝜃𝜃, 𝑥𝑥)�  =
1

𝑓𝑓D(𝜃𝜃, 𝑥𝑥)
𝐴𝐴𝑛𝑛(𝜃𝜃,𝑦𝑦, 𝑥𝑥) + 𝐵𝐵𝑛𝑛(𝜃𝜃,𝑦𝑦, 𝑥𝑥),

 

where 

𝐴𝐴𝑛𝑛(𝜃𝜃,𝑦𝑦, 𝑥𝑥) =
1

𝑛𝑛𝑔𝑔𝑛𝑛𝔼𝔼�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�
���𝐻𝐻𝑖𝑖(𝑡𝑡) − 𝑔𝑔𝑛𝑛𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖(𝜃𝜃, 𝑥𝑥) 
𝑛𝑛

𝑖𝑖=1

       −𝔼𝔼��𝐻𝐻𝑖𝑖(𝑡𝑡) − 𝑔𝑔𝑛𝑛𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖(𝜃𝜃, 𝑥𝑥)��  =
1

𝑛𝑛𝑔𝑔𝑛𝑛𝔼𝔼�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�
�𝑁𝑁𝑖𝑖

𝑛𝑛

𝑖𝑖=1

(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)
 

 

and 𝐵𝐵𝑛𝑛(𝜃𝜃,𝑦𝑦, 𝑥𝑥) = 𝑀𝑀1(𝜃𝜃, 𝑥𝑥)𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥) −  𝔼𝔼𝑓𝑓𝑁𝑁(𝜃𝜃, 𝑦𝑦, 𝑥𝑥) + 𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥) �𝑀𝑀1(𝜃𝜃, 𝑥𝑥) − 𝔼𝔼𝑓𝑓𝐷𝐷(𝜃𝜃, 𝑥𝑥)�. 

It follows that, 

𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝑉𝑉𝑎𝑎𝑟𝑟�𝐴𝐴𝑛𝑛(𝜃𝜃,𝑦𝑦, 𝑥𝑥)� =
𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)

𝑔𝑔𝑛𝑛𝔼𝔼2�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�
𝑉𝑉𝑎𝑎𝑟𝑟�𝑁𝑁1(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�

                
 = 𝑉𝑉𝑛𝑛(𝜃𝜃,𝑦𝑦, 𝑥𝑥). 

Then, the proof of Theorem 4.1 can be deduced from the following lemmas. 

Lemma 4.1. Under the assumptions of Theorem 4.1, one has 

�𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝐴𝐴𝑛𝑛(𝜃𝜃,𝑦𝑦, 𝑥𝑥)
𝒟𝒟
→𝒩𝒩�0,𝜎𝜎2(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�. 

Proof. 

 
𝑉𝑉𝑛𝑛(𝜃𝜃,𝑦𝑦, 𝑥𝑥) =

𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
𝑔𝑔𝑛𝑛𝔼𝔼2�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�

𝔼𝔼 �𝛿𝛿1𝐾𝐾12(𝜃𝜃, 𝑥𝑥)�𝐻𝐻1(𝑦𝑦)− 𝑔𝑔𝑛𝑛𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�2�

   =  
𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)

𝑔𝑔𝑛𝑛𝔼𝔼2�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�
𝔼𝔼 �𝐾𝐾12(𝜃𝜃, 𝑥𝑥)𝔼𝔼�𝛿𝛿1 �𝐻𝐻1(𝑦𝑦) − 𝑔𝑔𝑛𝑛𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�2� 〈𝜃𝜃,𝑋𝑋1〉��

. (4.1) 
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Using the definition of conditional variance, one has 

𝔼𝔼�𝛿𝛿1 �𝐻𝐻1(𝑡𝑡) − 𝑔𝑔𝑛𝑛𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�2� 〈𝜃𝜃,𝑋𝑋1〉� = 𝐽𝐽1𝑛𝑛 + 𝐽𝐽2𝑛𝑛, 

where 𝐽𝐽1𝑛𝑛 = 𝑉𝑉𝑎𝑎𝑟𝑟(𝛿𝛿1𝐻𝐻1(𝑦𝑦)|〈𝜃𝜃,𝑋𝑋1〉), 𝐽𝐽2𝑛𝑛 = [𝔼𝔼(𝐻𝐻1(𝑦𝑦)|〈𝜃𝜃,𝑋𝑋1〉) − 𝑔𝑔𝑛𝑛𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)]2. 

• Concerning 𝐽𝐽1𝑛𝑛, 

𝐽𝐽1𝑛𝑛 = 𝔼𝔼�𝐻𝐻2 �𝑦𝑦−𝑌𝑌1
𝑔𝑔𝑛𝑛

�� 〈𝜃𝜃,𝑋𝑋1〉� − �𝔼𝔼�𝛿𝛿1 𝐻𝐻1 �
𝑦𝑦−𝑌𝑌1
𝑔𝑔𝑛𝑛

�� 〈𝜃𝜃,𝑋𝑋1〉��
2

= 𝒥𝒥1 + 𝒥𝒥2. 

As for 𝒥𝒥1, by the property of double conditional expectation, one obtains that 

𝒥𝒥1 = 𝔼𝔼�𝛿𝛿1𝐻𝐻2 �
𝑦𝑦 − 𝑌𝑌1
𝑔𝑔𝑛𝑛

�� 〈𝜃𝜃,𝑋𝑋1〉� = 𝑝𝑝(𝑥𝑥,𝜃𝜃)�𝐻𝐻2 �
𝑦𝑦 − 𝑣𝑣
𝑔𝑔𝑛𝑛

�𝑓𝑓(𝜃𝜃, 𝑣𝑣,𝑋𝑋1)𝑑𝑑𝑣𝑣

 = 𝑝𝑝(𝑥𝑥,𝜃𝜃)�𝐻𝐻2(𝑢𝑢)𝑑𝑑𝐹𝐹(𝜃𝜃,𝑦𝑦 − 𝑢𝑢𝑔𝑔𝑛𝑛,𝑋𝑋1)
  .   

On the other hand, under assumption (H2) and (H3)  

 𝒥𝒥1 = �𝐻𝐻2(𝑢𝑢)𝑑𝑑𝐹𝐹(𝜃𝜃,𝑦𝑦 − 𝑢𝑢𝑔𝑔𝑛𝑛,𝑋𝑋1) = ℎ𝑛𝑛 �𝐻𝐻2(𝑢𝑢)𝑓𝑓(𝜃𝜃,𝑦𝑦 − 𝑢𝑢𝑔𝑔𝑛𝑛,𝑋𝑋1)𝑑𝑑𝑢𝑢

  ≤ 𝑔𝑔𝑛𝑛 �𝐻𝐻2(𝑢𝑢)�𝑓𝑓(𝜃𝜃,𝑦𝑦 − 𝑢𝑢𝑔𝑔𝑛𝑛,𝑋𝑋1) − 𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�𝑑𝑑𝑢𝑢 + 𝑔𝑔𝑛𝑛 �𝐻𝐻2(𝑢𝑢)𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)𝑑𝑑𝑢𝑢
     

 

≤ 𝑔𝑔𝑛𝑛 �𝐶𝐶𝜃𝜃,𝑥𝑥 �𝐻𝐻2(𝑢𝑢)�ℎ𝑛𝑛
𝛼𝛼1 + |𝑣𝑣|𝛼𝛼2𝑔𝑔𝑛𝑛

𝛼𝛼2�𝑑𝑑𝑢𝑢 + 𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�𝐻𝐻2(𝑢𝑢)𝑑𝑑𝑢𝑢�

= 𝒪𝒪�ℎ𝑛𝑛
𝛼𝛼1 + 𝑔𝑔𝑛𝑛

𝛼𝛼2�+ 𝑔𝑔𝑛𝑛𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�𝐻𝐻2(𝑢𝑢)𝑑𝑑𝑢𝑢
 

. (4.2) 

As for 𝐽𝐽2, 𝒥𝒥2′ = 𝔼𝔼(𝛿𝛿1𝐻𝐻1(𝑦𝑦)|〈𝜃𝜃,𝑋𝑋1〉) = 𝑝𝑝(𝑥𝑥,𝜃𝜃)∫𝐻𝐻 �𝑦𝑦−𝑣𝑣𝑔𝑔𝑛𝑛
�𝑓𝑓(𝜃𝜃,𝑦𝑦,𝑋𝑋1)𝑑𝑑𝑣𝑣. 

Moreover, by changing the variables, one has 

𝒥𝒥′2 = ℎ𝑛𝑛 �𝐻𝐻(𝑢𝑢)�𝑓𝑓(𝜃𝜃,𝑦𝑦 − 𝑢𝑢𝑔𝑔𝑛𝑛, 𝑥𝑥) − 𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�𝑑𝑑𝑢𝑢 +𝑔𝑔𝑛𝑛𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�𝐻𝐻(𝑢𝑢)𝑑𝑑𝑢𝑢, 

the last equality is due to the fact that 𝐻𝐻 is a probability density, thus 

𝒥𝒥′2 = 𝒪𝒪�ℎ𝑛𝑛
𝛼𝛼1 + 𝑔𝑔𝑛𝑛

𝛼𝛼2� + 𝑔𝑔𝑛𝑛𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥). 

Finally, one obtains 𝐽𝐽2 𝑛𝑛→∞
�⎯⎯�∞ . As for J2n, by (H1),(H2) and (H5), one obtains 𝐽𝐽2𝑛𝑛 𝑛𝑛→∞

�⎯⎯� ∞. 

Meanwhile, by (H1)-(H2) and (H5), it follows that 

𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝔼𝔼𝐾𝐾12(𝜃𝜃, 𝑥𝑥)
𝔼𝔼2�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)� 𝑛𝑛→∞

�⎯⎯�
𝑀𝑀2(𝜃𝜃, 𝑥𝑥)

(𝑀𝑀1(𝜃𝜃, 𝑥𝑥))2 , 

which leads to combining equations (4.1) and (4.2) 

𝑉𝑉𝑛𝑛(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)
𝑛𝑛→∞
�⎯⎯�

𝑀𝑀2(𝜃𝜃, 𝑥𝑥)𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)
(𝑀𝑀1(𝜃𝜃, 𝑥𝑥))2𝑝𝑝(𝑥𝑥,𝜃𝜃) . 

Lemma 4.2. If the assumptions (H1) to (H9) are satisfied, one has 

�𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝐵𝐵𝑛𝑛(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) → 0, in probability. 
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Proof.   

One has 

�𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝐵𝐵𝑛𝑛(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) =
�𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)

𝑓𝑓𝐷𝐷(𝜃𝜃, 𝑥𝑥)
�𝔼𝔼𝑓𝑓𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥) −𝑀𝑀1(𝜃𝜃, 𝑥𝑥)𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)

+𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥) �𝑀𝑀1(𝜃𝜃, 𝑥𝑥) − 𝔼𝔼𝑓𝑓𝐷𝐷(𝜃𝜃, 𝑥𝑥)� .
 

Firstly, observe that the results below as 𝑛𝑛 → ∞ 

 1
𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝔼𝔼 �𝐾𝐾

𝑙𝑙 �
〈𝜃𝜃, 𝑥𝑥 − 𝑋𝑋𝑖𝑖〉

ℎ𝑛𝑛
�� → 𝑀𝑀𝑙𝑙(𝜃𝜃, 𝑥𝑥), for 𝑙𝑙 = 1,2,    (4.3) 

 𝔼𝔼𝑓𝑓𝐷𝐷(𝜃𝜃, 𝑥𝑥) → 𝑀𝑀1(𝜃𝜃, 𝑥𝑥)𝑝𝑝(𝑥𝑥,𝜃𝜃)  𝑎𝑎𝑛𝑛𝑑𝑑  𝔼𝔼𝑓𝑓𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥) → 𝑀𝑀1(𝜃𝜃, 𝑥𝑥)𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥), (4.4) 

can be proved in the same way as in (Ezzahrioui and Ould-Saïd, 2008) corresponding to their Lemmas 
5.1 and 5.2, and then their proofs are omitted. 

Secondly, on the one hand, making use of (4.3) and (4.4), one has as 𝑛𝑛 → ∞ 

�𝔼𝔼𝑓𝑓𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥) −𝑀𝑀1(𝜃𝜃, 𝑥𝑥)𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥) + 𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥) �𝑀𝑀1(𝜃𝜃, 𝑥𝑥) − 𝔼𝔼𝑓𝑓𝐷𝐷(𝜃𝜃, 𝑥𝑥)�� → 0. 

On the other hand, 

�𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
𝑓𝑓D(𝜃𝜃, 𝑥𝑥)

=
�𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)

𝑓𝑓D(𝜃𝜃, 𝑥𝑥)𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)
=
�𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)

𝑓𝑓𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥)
. 

As 𝐾𝐾  and 𝐻𝐻   are continuous with support on [0,1], then by (H2) and (H3) ∃ 𝑠𝑠 = min
[0,1]

𝐾𝐾(𝑡𝑡)𝐻𝐻(𝑡𝑡) it 

follows that 

𝑓𝑓𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥) ≥ 𝑚𝑚
𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛), 

which gives  

�𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
𝑓𝑓𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥)

≤
�𝑛𝑛𝑔𝑔𝑛𝑛 

3 𝜙𝜙𝜃𝜃,𝑥𝑥
3 (ℎ𝑛𝑛)

𝑠𝑠
. 

Finally, using (N2)-(i), completes the proof of Lemma 4.2. 

4.1. Application: The Conditional Mode in Functional Single-Index Model  

The main objective of this part was to establish the asymptotic normality of the conditional mode 
estimator of  𝑌𝑌 given < 𝜃𝜃,𝑋𝑋 >=< 𝜃𝜃, 𝑥𝑥 > denoted by 𝑀𝑀𝜃𝜃(𝑥𝑥).  

Corollary 4.1 Under the assumptions of Theorem 4.1, and if (H8) holds true, and in addition if  

𝑛𝑛𝑔𝑔𝑛𝑛3𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
𝑛𝑛→∞
�⎯⎯� 0, 

then with 𝑛𝑛 → ∞, 

�𝑛𝑛𝑔𝑔𝑛𝑛3𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛) �𝑀𝑀�𝜃𝜃(𝑥𝑥) −𝑀𝑀𝜃𝜃(𝑥𝑥)�
     𝒟𝒟      
�⎯⎯⎯�𝒩𝒩�0, 𝜚𝜚2(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥), 𝑥𝑥)�, 

where 

𝜚𝜚2(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥) =
𝑀𝑀2(𝜃𝜃, 𝑥𝑥)𝑓𝑓(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥), 𝑥𝑥)

𝑝𝑝(𝜃𝜃, 𝑥𝑥)�𝑀𝑀1(𝜃𝜃, 𝑥𝑥)𝑓𝑓(2)(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥)�2
��𝐻𝐻′(𝑢𝑢)�2𝑑𝑑𝑢𝑢. 
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Proof. 

By the first order Taylor expansion for 𝑓𝑓(1)(𝜃𝜃,𝑦𝑦, 𝑥𝑥)  at point 𝑀𝑀𝜃𝜃(𝑥𝑥),  and the fact that 
𝑓𝑓(1)�𝜃𝜃,𝑀𝑀�𝜃𝜃(𝑥𝑥), 𝑥𝑥� = 0, it follows that 

�𝑛𝑛𝑔𝑔𝑛𝑛3𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛) �𝑀𝑀�𝜃𝜃(𝑥𝑥) −𝑀𝑀𝜃𝜃(𝑥𝑥)� = −�𝑛𝑛𝑔𝑔𝑛𝑛3𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
𝑓𝑓(1)(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥)
𝑓𝑓(2)�𝜃𝜃,𝑀𝑀𝜃𝜃

∗(𝑥𝑥),𝑥𝑥�
 , 

where 𝑀𝑀𝜃𝜃
∗(𝑥𝑥) is between 𝑀𝑀�𝜃𝜃(𝑥𝑥) and 𝑀𝑀𝜃𝜃(𝑥𝑥). Similarly to the proof of Theorem 4.1, it follows that 

 
−�𝑛𝑛𝑔𝑔𝑛𝑛3𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝑓𝑓(1)(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥)

     𝒟𝒟      
�⎯⎯⎯�𝒩𝒩 �0, 𝜚𝜚02(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥), 𝑥𝑥)�, (4.4) 

where 

𝜚𝜚02(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥) =
𝑀𝑀2(𝜃𝜃, 𝑥𝑥)

(𝑀𝑀1(𝜃𝜃, 𝑥𝑥))2
𝑓𝑓(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥), 𝑥𝑥)

𝑝𝑝(𝜃𝜃, 𝑥𝑥) ��𝐻𝐻′(𝑢𝑢)�2𝑑𝑑𝑢𝑢. 

Thus, as above, similarly to Ferraty and Vieu (2006), one can obtain 𝑓𝑓(2)(𝜃𝜃,𝑦𝑦, 𝑥𝑥)
ℙ
→ 𝑓𝑓(2)(𝜃𝜃,𝑦𝑦, 𝑥𝑥), as 

𝑛𝑛 → ∞, which implies that 𝑀𝑀�𝜃𝜃(𝑥𝑥) → 𝑀𝑀𝜃𝜃(𝑥𝑥). Therefore 

 𝑓𝑓(2)(𝜃𝜃,𝑀𝑀𝜃𝜃
∗(𝑥𝑥),𝑥𝑥)

𝑛𝑛 →∞
�⎯⎯� 𝑓𝑓(2)(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥), 𝑥𝑥) ≠ 0. (4.5) 

By (H2), (H8) and (N3), similarly to the proof of Lemma 4.1 and Lemma 4.2, respectively, (4.4) follows 
directly. Then, the proof of Corollary 4.1 is completed. 

4.2. Application: The Conditional Mode in Functional Single-Index Model  

The asymptotic variances 𝜎𝜎2(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) and 𝜚𝜚2(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥)  in Theorem 4.1 and Corollary 4.1 depend on 
some unknown quantities including  𝑀𝑀1 , 𝑀𝑀2 , 𝜙𝜙(𝑢𝑢) , 𝑀𝑀𝜃𝜃(𝑥𝑥), 𝑝𝑝(𝜃𝜃, 𝑥𝑥)  and 𝑓𝑓(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥). Therefore, 
𝑝𝑝(𝜃𝜃, 𝑥𝑥) ,  𝑀𝑀𝜃𝜃(𝑥𝑥) , and 𝑓𝑓(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥)  can be estimated respectively by 𝑃𝑃𝑛𝑛(𝜃𝜃, 𝑥𝑥) , 𝑀𝑀�𝜃𝜃(𝑥𝑥)  and 
𝑓𝑓(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥), 𝑥𝑥) and 𝑀𝑀�𝜃𝜃(𝑥𝑥). Moreover, using the decomposition given by assumption (H1), one can 
estimate 𝜙𝜙𝜃𝜃,𝑥𝑥(. ) by 𝜙𝜙�𝜃𝜃,𝑥𝑥(. ), with the unknown functions 𝑀𝑀𝑗𝑗 ∶= 𝑀𝑀𝑗𝑗(𝜃𝜃, 𝑥𝑥) and 𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥) intervening in 
the expression of the variance. Therefore, it was necessary to estimate the mode 𝑀𝑀1(𝜃𝜃, 𝑥𝑥), 𝑀𝑀2(𝜃𝜃, 𝑥𝑥) 
and 𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥), respectively.  

By assumptions (H1) to (H4), one knows that 𝑀𝑀𝑗𝑗(𝜃𝜃, 𝑥𝑥) can be estimated by 𝑀𝑀�𝑗𝑗(𝜃𝜃, 𝑥𝑥) which is defined as  

𝑀𝑀�𝑗𝑗(𝜃𝜃, 𝑥𝑥) =
1

𝑛𝑛𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ)
�𝐾𝐾𝑖𝑖

𝑗𝑗(𝜃𝜃, 𝑥𝑥), where  𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ) =
1
𝑛𝑛

𝑛𝑛

𝑖𝑖=1

�𝟏𝟏{|〈𝑥𝑥−𝑋𝑋𝑖𝑖,𝜃𝜃〉|<ℎ}

𝑛𝑛

𝑖𝑖=1

, 

with 𝟏𝟏{.} being the indicator function. Finally, the estimator of 𝑝𝑝(𝜃𝜃, 𝑥𝑥) is denoted by 

𝑃𝑃𝑛𝑛(𝜃𝜃, 𝑥𝑥) =
∑ 𝛿𝛿𝑖𝑖𝐾𝐾�ℎ𝑛𝑛−1(<𝑥𝑥−𝑋𝑋𝑖𝑖,𝜃𝜃>)�𝑛𝑛
𝑖𝑖=1

∑ 𝐾𝐾�ℎ𝑛𝑛−1(<𝑥𝑥−𝑋𝑋𝑖𝑖,𝜃𝜃>)�𝑛𝑛
𝑖𝑖=1

 . 

By applying the kernel estimator of 𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥) given above, the quantity 𝜎𝜎2(𝜃𝜃,𝑦𝑦, 𝑥𝑥) can be estimated by: 

𝜎𝜎�2(𝜃𝜃,𝑦𝑦, 𝑥𝑥) =
𝑀𝑀�2(𝜃𝜃, 𝑥𝑥)

�𝑀𝑀�1(𝜃𝜃, 𝑥𝑥)�2
𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)
𝑃𝑃𝑛𝑛(𝜃𝜃, 𝑥𝑥) �𝐻𝐻2(𝑢𝑢)𝑑𝑑𝑢𝑢. 

Finally, in order to show the asymptotic (1 − 𝜉𝜉) confidence interval of 𝑀𝑀𝜃𝜃(𝑥𝑥), one needs to consider 
the estimator of 𝜚𝜚2(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥) as follows: 
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𝜚𝜚�2(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥) =
𝑀𝑀�2(𝜃𝜃, 𝑥𝑥)

�𝑀𝑀�1(𝜃𝜃, 𝑥𝑥)�2
𝑓𝑓(𝜃𝜃,𝑀𝑀�𝜃𝜃(𝑥𝑥),𝑥𝑥)

𝑃𝑃𝑛𝑛(𝜃𝜃, 𝑥𝑥) �𝑓𝑓(2)�𝜃𝜃,𝑀𝑀�𝜃𝜃(𝑥𝑥),𝑥𝑥��
2 ��𝐻𝐻

′(𝑢𝑢)�2𝑑𝑑𝑢𝑢. 

Hence one can derive the following corollary: 

Corollary 4.2. Under the assumptions of Theorem 4.1, 𝐾𝐾ʹ  and (𝐾𝐾2)ʹ  are integrable functions, 
𝑤𝑤ith  𝑛𝑛 → ∞.  

1.  

�𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙
�𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)

𝜎𝜎�2(𝜃𝜃,𝑦𝑦, 𝑥𝑥) �𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�
     𝒟𝒟      
�⎯⎯⎯�𝒩𝒩(0,1). 

2.  

� 𝑛𝑛𝑔𝑔𝑛𝑛3𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
𝜚𝜚�2(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥) �𝑀𝑀

�𝜃𝜃(𝑥𝑥)−𝑀𝑀𝜃𝜃(𝑥𝑥)�
     𝒟𝒟      
�⎯⎯⎯�𝒩𝒩(0,1). 

Proof. 

Observe that 

1.  

Σ(𝜃𝜃,𝑦𝑦, 𝑥𝑥) =
𝑀𝑀�1
𝑀𝑀1

�
𝑀𝑀2

𝑀𝑀�2
�
𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝑃𝑃𝑛𝑛(𝜃𝜃, 𝑥𝑥)𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)
𝑝𝑝(𝜃𝜃, 𝑥𝑥)𝑓𝑓(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)

                                ×
𝑀𝑀1

�𝑀𝑀2
�
𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
𝜎𝜎2(𝜃𝜃,𝑦𝑦, 𝑥𝑥) �𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�

, 

where Σ(𝜃𝜃,𝑦𝑦, 𝑥𝑥) = �𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
𝜎𝜎�2(𝜃𝜃,𝑦𝑦,𝑥𝑥) �𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�, by Theorem 4.1, with 𝑛𝑛 → ∞, one has 

�
𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
𝜎𝜎2(𝜃𝜃,𝑦𝑦, 𝑥𝑥) �𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�

     𝒟𝒟      
�⎯⎯⎯�𝒩𝒩(0,1). 

In order to prove (1), one has to show that 

𝑀𝑀�1
𝑀𝑀1

�
𝑀𝑀2

𝑀𝑀�2
�
𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝑃𝑃𝑛𝑛(𝜃𝜃, 𝑥𝑥)𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)
𝑝𝑝(𝜃𝜃, 𝑥𝑥)𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)

�𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�
     ℙ      
�⎯⎯⎯�𝒩𝒩(0,1), 

using the results given from (Laib and Louani, 2010), one obtains 

𝑀𝑀�1
ℙ
→𝑀𝑀1,𝑀𝑀�2

ℙ
→𝑀𝑀2 and  

𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)

�𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
ℙ
→1  as 𝑛𝑛 → ∞. 

On the other hand, by Proposition 2 in (Laib and Louani, 2010), it follows that  

𝑃𝑃𝑛𝑛(𝜃𝜃, 𝑥𝑥)
𝑛𝑛→∞
�⎯⎯�𝔼𝔼(𝛿𝛿|〈𝑋𝑋,𝜃𝜃〉 = 〈𝑥𝑥,𝜃𝜃〉) = ℙ(𝛿𝛿 = 1|〈𝑋𝑋,𝜃𝜃〉 = 〈𝑥𝑥,𝜃𝜃〉) = 𝑝𝑝(𝑥𝑥,𝜃𝜃). 

In addition, by Theorem 3.1, one has 𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥) ⟶ 𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥) with 𝑛𝑛 → ∞. This yields the proof of the 
first part of Corollary 4.2.  
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2.  

𝑀𝑀�1𝑓𝑓(2)�𝜃𝜃,𝑀𝑀�𝜃𝜃(𝑥𝑥),𝑥𝑥�
�𝑀𝑀�2

�
𝑛𝑛𝑔𝑔𝑛𝑛3𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝑃𝑃𝑛𝑛(𝜃𝜃, 𝑥𝑥)

𝑓𝑓(𝜃𝜃,𝑀𝑀�𝜃𝜃(𝑥𝑥), 𝑥𝑥)
�𝑀𝑀�𝜃𝜃(𝑥𝑥) −𝑀𝑀𝜃𝜃(𝑥𝑥)�

=
𝑀𝑀�1�𝑀𝑀2

𝑀𝑀1�𝑀𝑀�2
�
𝑛𝑛𝑔𝑔𝑛𝑛3𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝑃𝑃𝑛𝑛(𝜃𝜃, 𝑥𝑥)𝑓𝑓(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥)

𝑛𝑛𝑔𝑔𝑛𝑛3𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝑝𝑝(𝜃𝜃, 𝑥𝑥)
𝑓𝑓(2)�𝜃𝜃,𝑀𝑀�𝜃𝜃(𝑥𝑥), 𝑥𝑥�
𝑓𝑓(2)(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥), 𝑥𝑥)

×
𝑀𝑀1

�𝑀𝑀2
�
𝑛𝑛𝑔𝑔𝑛𝑛3𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝑝𝑝(𝜃𝜃, 𝑥𝑥)
𝑓𝑓(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥), 𝑥𝑥)

𝑓𝑓(2)(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥) �𝑀𝑀�𝜃𝜃(𝑥𝑥) −𝑀𝑀𝜃𝜃(𝑥𝑥)� .

 

Making use of Corollary 4.1, one obtains 

𝑀𝑀1

�𝑀𝑀2
�
𝑛𝑛𝑔𝑔𝑛𝑛3𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝑝𝑝(𝜃𝜃, 𝑥𝑥)
𝑓𝑓(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥), 𝑥𝑥)

𝑓𝑓(2)(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥) �𝑀𝑀�𝜃𝜃(𝑥𝑥) −𝑀𝑀𝜃𝜃(𝑥𝑥)�⟶𝒩𝒩(0,1). 

Further, by considering Lemma 4.2, (3.2) and (4.5), one obtains with 𝑛𝑛 → ∞, that 

𝑀𝑀�1�𝑀𝑀2

𝑀𝑀1�𝑀𝑀�2
�
𝑛𝑛𝑔𝑔𝑛𝑛3𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝑃𝑃𝑛𝑛(𝜃𝜃, 𝑥𝑥)𝑓𝑓(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥), 𝑥𝑥)

𝑛𝑛𝑔𝑔𝑛𝑛3𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝑝𝑝(𝜃𝜃, 𝑥𝑥)
𝑓𝑓(2)�𝜃𝜃,𝑀𝑀�𝜃𝜃(𝑥𝑥),𝑥𝑥�
𝑓𝑓(2)(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥)

     ℙ      
�⎯⎯⎯�1. 

Hence, the proof is completed. 

Remark 4.1.  

Thus, following Corollary 4.2, the asymptotic (1 − 𝜉𝜉)  confidence interval of conditional density 
𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥) and conditional mode 𝑀𝑀𝜃𝜃(𝑥𝑥), respectively, which are expressed as follows: 

𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥) ± 𝜂𝜂𝛾𝛾/2�
𝜎𝜎�2(𝜃𝜃,𝑦𝑦, 𝑥𝑥)
𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)

, 

and  

𝑀𝑀�𝜃𝜃(𝑥𝑥) ± 𝜂𝜂𝛾𝛾/2�
𝜚𝜚�2(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥)
𝑛𝑛𝑔𝑔𝑛𝑛3𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)

, 

where 𝜎𝜎�2(𝜃𝜃,𝑦𝑦, 𝑥𝑥) and 𝜚𝜚�2(𝜃𝜃,𝑀𝑀𝜃𝜃(𝑥𝑥),𝑥𝑥) are defined in Corollary 4.2 respectively and  𝜂𝜂𝛾𝛾/2 is the upper 
𝛾𝛾/2 quantile of the normal distribution 𝒩𝒩(0,1). 

5. Examples 

This section is devoted to specific examples demonstrating the application value of the research. 

The examples illustrate the broad applicability of research that involves the estimation of conditional 
models with a functional single index structure while considering missing data. The specific details and 
examples would depend on the particularities of the research in question and its subsequent 
applications in various domains. 
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To understand the application value of this research, one may want to look into how the methodology 
or findings of the research were utilised in subsequent studies or practical applications. Here are some 
hypothetical examples of how such research could be applied: 

• Biomedical Research: In the context of medical studies, the research might be applied to model 
and estimate the relation between a functional index and health outcomes. Functional data 
analysis is often applied in biomedical research, where data collected over time or space can have 
a functional structure. For example, analysing medical images over time or studying physiological 
responses over a period can benefit from models that incorporate missing data and functional 
single index structures. Dealing with missing data is common in clinical studies, and incorporating 
methodologies to address this improves the robustness of the analysis. Stationary processes with 
a functional nature could be relevant in analysing time-dependent physiological data. 

• Finance: The research could find applications in modelling financial time series data where 
a functional single index could represent a key factor influencing market dynamics. 

• Dealing with missing financial data is common due to holidays, weekends, or other reasons, making 
the incorporation of missing data handling techniques important. 

• The consideration of stationary processes with a functional nature could be valuable for risk 
assessment and portfolio management. 

• In finance, time-dependent data such as stock prices, interest rates, or economic indicators can be 
analysed using functional data models. Estimating conditional models with missing data can 
provide insights into the relation between various financial variables, helping in risk assessment 
and investment strategies. 

• Environmental Studies: Environmental data, such as air quality measurements, temperature 
variations, and ecological patterns, often exhibit functional structures. Research in this domain 
might involve estimating conditional models to understand how different variables interact over 
time, considering missing data and the functional nature of the processes involved. 

• Social Sciences: Functional data analysis is applicable in social sciences when dealing with time- 
-dependent or spatial data. For instance, studying the evolution of social trends or economic 
indicators over time could benefit from models that account for missing data and incorporate 
a functional single index structure. 

• Manufacturing and Engineering: In manufacturing processes, understanding the variation and 
performance of equipment over time is crucial. Functional data analysis can be applied to model 
the functional relations within the context of a single index structure, especially when dealing with 
processes that might have missing data due to equipment failure or bad maintenance. 

• Psychology and Education: Longitudinal studies in psychology and education often involve 
collecting data over time, and the application of functional data models can aid in understanding 
how certain factors influence outcomes. Models that handle missing data are essential to account 
for participants dropping out or missing certain assessment points. 

• Economic Forecasting: The functional single index structure could be applied in economic 
modelling where variables evolve over time. Incorporating missing data handling techniques can 
be crucial in dealing with incomplete economic datasets. The stationary processes with a functional 
nature could be relevant for understanding economic stability or trends. 

6. Conclusion 

This paper concentrated on the non-parametrical estimation of the conditional density function and 
conditional mode within the single functional index model for independent data, particularly when the 
variable of interest is affected by randomly missing data. This involved a semi-parametric single model 
structure and a censoring process on the variables. The study established both the almost complete 
uniform convergence of the proposed estimators and the asymptotic normality of the derived 
estimates under specific mild conditions, relying on standard assumptions in Functional Data Analysis 
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(FDA) for the proofs. Additionally, the authors explored the practical application of their findings in 
constructing confidence intervals for the proposed estimators. 

This research has distinct characteristics from a theoretical standpoint, aiming to elucidate the model, 
process, and asymptotic outcomes of the primary focus of this analysis. The adaptive regression model 
considered for the presence of randomly missing data eliminated the deviations effect, and the 
nonparametric method employed in the single functional index model served as an alternative 
smoothing solution to the Nadaraya-Watson one, overcoming the technical complexity associated with 
bandwidth selection. Consequently, even in the presence of randomly missing data, the accuracy of 
the estimator was maintained, allowing for the integration of more practical scenarios. 
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Centralne twierdzenie graniczne dla trybu warunkowego 
w jednolitym funkcjonalnym modelu indeksowym z losowym brakiem danych 

Streszczenie: W artykule skoncentrowano się na nieparametrycznym estymowaniu warunkowej 
funkcji gęstości i warunkowej dominanty w modelu pojedynczego wskaźnika funkcjonalnego dla 
niezależnych danych, szczególnie gdy na interesującą zmienną wpływają losowo brakujące dane. 
Obejmuje to strukturę półparametrycznego pojedynczego modelu i proces cenzurowania zmiennych. 
Zgodność estymatora (ze współczynnikami) w różnych sytuacjach, np. w ramach modelu pojedynczego 
wskaźnika funkcjonalnego przy założeniu niezależnych i z identycznym rozkładem danych z losowymi 
brakami, a także jego działanie w warunkach, gdy zmienna towarzysząca jest funkcjonałem, to główne 
obszary zainteresowania. Dla tego modelu wyznacza się prawie całkowicie jednolitą zbieżność 
i wskaźnik zbieżności. Wskaźniki zbieżności podkreślają kluczową rolę, jaką prawdopodobieństwo 
koncentracji odgrywa w założeniach dotyczących objaśniającej zmiennej funkcjonalnej. Dodatkowo 
ustala się asymptotyczną normalność wyprowadzonych estymatorów zaproponowanych w okreś- 
lonych łagodnych warunkach, opierając się na standardowych założeniach z analizy danych funkcjonal-
nych dla dowodów. Na koniec zbadano praktyczne zastosowanie ustaleń w konstruowaniu przedziałów 
ufności dla naszych estymatorów. Wskaźniki zbieżności podkreślają kluczową rolę, jaką prawdo-
podobieństwo koncentracji odgrywa w założeniach dotyczących objaśniającej zmiennej funkcjonalnej. 

Słowa kluczowe: funkcjonalna analiza danych, funkcjonalny proces pojedynczego indeksu, estymator 
jądra, losowe braki, estymacja nieparametryczna, prawdopodobieństwo małej kuli 
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