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Abstract
Aim: Introduce a novel method for minimizing functions in the form of a sum of absolute values.

Methodology: The sum of absolute values can be standardized so that the sum of the coefficients
equals 1. In this case, the sum of absolute values takes the form E|X — a|, where X is a random
variable.
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Results: Any median of X is a minimiser of the function E|X — a|. To minimise the function, it suffices
to find any median of X.

Implications and recommendations: The method introduced in this paper can be applied to minimise
a large family of functions.

Originality/value: Our work uses the probabilistic method to solve optimization problems.

Keywords: median, probability distribution, minimum value

1. Introduction
To find the minimum of the following function (Xu, 2012, p. 54, Example 1):
f)=Ix|+2|x—1+|x—2|+|x— 4|+ |x — 6]+ 2|x — 10|, x € R. (1)

Before approaching this problem, let us study an easier one. Suppose a and b are two constants and
a < b. Consider function:

fx)=|x—al+|x—b| x€ER. (2)

Lemma 1. An x minimises f in (2) if and only if x € [a, b].
Proof. One can write f as

(a+b)—2x ifx <a,
fx) = b—a ifa<x<h,
2x — (a+b) ifb < x.

The minimum of f is b - a, and f(x) takes this value if and only if x € [a, b].

Lemma 1 indicates that the set of minimisers of f in (2) is exactly the closed interval [a, b]. In particular,
f achieves its minimum at both endpoints of the interval.

Theorem 2. Given the sequence of real numbers a; < a, < - < a,, let
f)=lx—ail+|x—ay|+-+[x—a,l, x eR (3)
(a) Ifnis odd, f achieves its minimum at x = ap41)/2-
(b) Ifnis even, f achieves its minimum at any x € [an/z, a(n+2)/2].
The following proof is of Nahin (2004). One can write f as
fO) =(x—a| + |x —anD + (Ix —az| + [x —ap—4 D + ..

From Lemma 1, if x minimises the sum within each pair of parentheses, it will minimise f in (3). If nis
odd, only a(u4+1)/2 does the work. If nis even, any x € [an/z,a(n+2)/2] works. Note that ag,4+1)/2
[respectively, (an/z + a(n+2)/2)/2] is the median of the sequence a4, a,,...,a, when n is odd
(respectively, even). In the following sections we show that if n is event, it is more meaningful to
designate any point within [an/z, a(n+2)/2] as a median of the sequence.

Suppose f is of the form:

f) =mylx —as| + mylx —az| + -+ mylx — a,|, x ER,
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where m;,i = 1, ..., n, are positive integers, and a; < a, < -+ < a,. Using the same method as above
one can prove that f achieves its minimum at any median of the following sequence:

Aqy ey A1y Agyeee, Qg sy Qpgyeee, Ay
N——_—— ~ > N—_——
mq m; my

The function at the beginning of this section can be written as:
fG)=|x|+lx—1+|x—1]+|x—2|+|x — 4| + [x — 6] + |x — 10| + |x — 10|.
Considering the sequence:
0,1, 1,2, 4,6, 10, 10,
one can see that f achieves its minimum at any x € [2,4].

A generalisation of Theorem 2, where coefficients are positive real numbers, has also been discussed
in the literature (cf. Bogomolny (2021)).

Theorem 3. Given a sequence of real numbers a; < a, < +-- < a,, and a sequence of positive numbers

Bl' BZ; ""ﬁn, Iet

f(x) = Pilx —ag| + Bolx —az| + -+ Bplx —ayl,x ER. (4)

Then f achieves its minimum at one of the intervals [ay,ai.1] if and only if the coefficients
B1, B2, ..., Bn, can be split into two groups with equal sums. Otherwise, the minimum is achieved at one
of the given points a;.

Remark 1. It seems that the conclusion of Theorem 3, as summarised in Bogomolny (2021), is not
rigorous. For example, consider the function:

(4-m)
4

f0) =2 -1 +1x 2] + 2 x - 3] + 2 x — 4 x ER,

then 1 + B3 = B, + 4 = 1/2. However, x = 2 is the unique minimiser of f.

Let § = 27:1,81 in (4). Since minimising f in (4) is the same as minimising f/S, without loss of
generality, assume S = 1.

Theorem 3 only considers the sum of finite terms. One can also consider minimising functions of the
form:

f(x)=2ﬁi|x_ailugi>Oli=1'2"'-' (5)
i=1

where a;,i = 1,2, are distinct. If Y72, 8; =1, thus B;,i =1,2, is a standardised sequence of
coefficients. The authors make this assumption in the following sections.

Besides being the sum of infinitely many terms, (5) is very different from (4). Since there are only finite
terms in (4), one can always assume a; < a, < -+ < a, by rearranging them. However, this operation
may be not possible in (5). For example, assume a; = (—1)!/i,i = 1,2, ... One cannot rearrange the
sequence to make it monotone; another difference is the set of minimisers. Theorem 3 indicates that
at least one of the elementsin {a;: i = 1, ..., n} is a minimiser of f in (3), however this may be not true
for f in (5). Example 3 in Section 3 shows a case where the unique minimiser of f is not an element in
{ai: i = 1,2, }
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The purpose of this paper was to introduce a united probabilistic approach which can be used for
minimising functions of the sum of finite or countably infinite terms of absolute values. The conclusion
of Theorem 3 is a special case of the obtained result.

2. Theory

First, let us review the definition of median in probability theory.

Definition 1. Given a real-valued random variable Y, real number m is called a median of Y if

P{Y <m}>1/2 and P{Y >m}=>1/2,

where P(E) denotes the probability of event E. Given probability distribution function F, m is called
amedianof Fif F(m) > 1/2and F(m—) < 1/2.

This definition was given in Problem 1.7 in Lehmann and Casella (1998, p. 62). For example, suppose
the distribution of Y is P{Y = 1} = P{Y = 2} = 1/2. Then any point in [1,2] is a median of Y.
Suppose the distribution of Y is P{Y = 1} = 1/3, P{Y = 2} = P{Y = 3} = 1/4,and P{Y = 5} = 1/6.
Then Y has a unique median 2.

First, let us prove the existence of median(s) for any real-valued random variable.

Theorem 4. Any real-valued random variable Y has at least one median, its set of medians is a finite
closed interval. For any a € R, this paper regards the singleton {a} as a closed interval [a, a].

Proof. Let A={m e R:P{Y <m}>1/2}and B={m € R:P{Y > m} > 1/2}. Then ANB is the
set of medians of Y. Since lim P{Y = m} = lim P{Y < m} = 1, both A and B are nonempty. Let
m—>—0oo m-—-0oo

m; = inf A and m, = sup B.If m; € A, then P{Y < m,} < 1/2, and there exists an € > 0 such that
P{Y <my + ¢} < 1/2, a contradiction. For any € > 0, P{Y > m, — €} = 1/2, which means that
P{Y <m, — €} < 1/2. Since € > 0 is arbitrary, one has P{Y <m,} < 1/2and P{Y > m,} > 1/2,
which means m, € B.

One can prove my; < m,. Suppose it is not. Then P{Y < m,} < 1/2 and there exists an € > 0 such
that P{Y < m, + €} < 1/2, which means that P{Y > m, + €} > 1/2, a contradiction.

It is clear that my,m, € ANB, and if m € [m,m;], thenmeANB. f m<m,, thenm¢A.
If m > m,, m & B, therefore AN B = [m, m,]. QED.

Remark 2. This theorem is Part (b) of Problem 1.7 in Lehmann and Casella (1998, p. 62); another proof
can be found in Shao (2005). Theorem 3 indicates that Y has either a unique median or uncountably
infinitely many medians.

Theorem 5. Given a random variable Y and x € R, let E|Y — x| be the expectation of |Y — x|.
(a) E|Y — x| = E|Y —m] if mis a median of Y.
(b) If E|Y| < o0 and xy minimises f(x) = E|Y — x|, x € R, then x is a median of Y.

Proof. (a) If E|Y| = +o0, then E|Y — x| = E|Y| — x = +oo for any x € R. The conclusion is trivial.
Without loss of generality, assume E|Y| < oo. Let m be any median of Y. First assume x > m. Then

(i) ifY>x,

[Y =x| =Y —m| = —(x —m);
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(i) ifm<Y <x,

[Y=x|=|Y—-—m|=x+m-2Y>2x+m—2x =—(x—m); and

(iii)if Y <m,
Y =x| =Y —m| = (x —m).
Therefore,

ElY —x|—E|Y —m| = (x —m)[P{Y < m} — P{Y >m}]
= (x—m)[2P{Y <m}—-1] = 0.

Similarly, if x < m,

ElY —=x|=E|Y —m| = (m —x)[P{Y = m} — P{Y <m}]
=m-—-x)[2P{Y >2m}—-1] = 0.

Hence, E|Y — x| = E|Y — m| forany x € R.

(b) Let [m,, m,] be the set of medians of Y. Suppose x; > m,. Then P{Y = x,} < 1/2, and
E|Y —xo| = E|Y —my| = (xo — mp)[2P{Y < mp} — 1] + 2E[(x — V) 1, <v<xy} -

If P{Y < m,}>1/2,thenE|Y — xo| — E|Y —m,| > 0. Letx; = (my + x¢)/2. fP{Y <m,} =1/2,
then

E|Y = xo| = EIY —my| = 2E[(x0 — Y)1m,<y<x,]
= ZE[(xo - Y)1m2<Y<x1]
> 2(xg — x1)P{m, <Y < x;}
= 2(xo — x1)[P{Y < x1} — P{Y > my}]
> 0.

Similarly, one has E|Y — xy| — E|Y —m4| > 0if x, < m;. QED.

Remark 3. Part (a) of Theorem 5 is Problem 1.8 in Lehmann and Casella (1998, p. 62); another proof
can be found in Shao (2005). This theorem means that if E|Y| < oo, then x; minimises function f(x) =
E|Y — x| f and only if x is a median of Y.

3. Applications

Theorem 5 offers a general united approach to finding minimum of functions in (4) and (5). Let Y be
a random variable with probability distribution P{Y = a;} = ;,i = 1,2, .... Then f in (4) or (5) is the
same as

f(x) =E|Y —x|.

Since f(x) = o if E|Y| = o, only consider the case that E|Y| < o, i.e. 272, Bila;| < co. From
Theorem 5 it follows that the key step in minimising f in (5) is to find a median of Y. For this purpose,
the authors considered several cases:

Case 1: Assume a;,i = 1,2, ..., is a strictly monotone sequence.

(i) Assumea; <a, <:--.Foranyx € R,

P{Y <x}= z Bi and P{Y >x}= z Bi.

i:a;sx i:a;2x
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Let

j o0
k; = inf jZI:ZﬁL-ZUZ and k, = sup j21:2ﬁi21/2

i=1 i=j

Since
*© k-1
ZBL-=1—2 B >1-1/2=1/2,
i=k; i=1

Hence

k, < ky,.

If Zf:ll i > 1/2then Y2 41 Bi < 1/2, which means k,, < k; + 1. This implies k,, = k;, and ay, is
the unique median of Y. If Zfilﬁi =1/2, then X2y 1 B; = 1/2, which means k,, = k; + 1, and the
set of medians of Y is [ay,, ai, |-

In this case, at least one of the elements in {a;:i = 1,2, ...} is a median of Y. Theorem 3 is a special
case of this result.

Example 1. Consider f in (1). The standardised sequence of coefficients is

8°4’°8’8'8'4
It is clear that k; = 3 and k,, = 4, therefore, f is minimised when x = a; = 2.

Example 2. Let

1 3 .
f(x) =z|x—1|+222"+1|x—i|, x €R.
i=2

Then k; = k,, = 2 and 2 is the unique median of Y. The minimum of f is 1.

(i) Assumea, > a, > ---.LetY' = —Y, then

fCG)=ElY —x| =El-Y - (=x)| =E

Yy — (—x)|.

One can first find any median m of Y’ using the method above, then —m minimises f. At least one of
the elementsin {a;:i = 1,2, ...} is a median of Y.

Case 2: Assume |a;|,i = 1,2, ..., is a monotone sequence.

(i) Assume |aq| < |ay| < -+~ Let

S, = 2 B and S, = Z B.
i:a;<0

i:a;i>0

IfS, > 1/2, let

) 1
k; = sup4j:a; <0, Z /Bizz.

i1i2J), a;<0

Then ay, is a median of Y.
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IfS; < 1/2, let

1
kl:inf j:aj20,51+ Z ,8125

iri<j,a;>0
Then ay, is a median of Y.

(ii) Assume |a;| = |ay| = --. Using a similar idea, one can easily find amedianof Y in {a;:i = 1,2, ... }.

In these two cases, at least one of the elementsin {a;:i = 1,2, ... } is a median of Y which minimises f.
However, this may not be true in general cases.

Case 3: Assume a;,i = 1,2, ..., is a general sequence.

There are two challenges in this case: (i) generally there is no explicit way to find a median of Y, and
(ii) even if the median of Y is unique, it may not be any element in {a;: i = 1,2, ... }. The authors used
the following example to show these challenges.

Example 3. Let a4, a,, ..., be an enumeration of rationals in (0, 1). Let f be in the form of (5). It was
first proved that Y has a unique median m. Suppose is not, then let m; < m, be two medians of Y.
Since rationals are dense in (0, 1),

N| —
N| —

<SPY <m}<P{Y <my}=1-P{¥ >m,} <

)

a contradiction.

The median of Y may be rational or irrational.

(i) Suppose ais a rational in (0,1). Let B(® = P{Y = a}. If (¥ > 1/2, then a is the median of Y. If
B@ < 1/2, then a is the median of Y if and only if

z ﬁiZ%—’B(G) and Z [)’izé_'g(a)_

i:a;<a i:a;>a

(ii) Suppose a is an irrational in (0, 1). Then a is the median of Y if and only if

Zﬁi= Zﬁi=%- (6)

i:a;<a i:a;i>a

Note that (6) holds only if a is irrational. In this case, although Y is a rational-valued random variable,
its unique median is irrational.

Here is a numeric example. Let s;,i = 1,2,... be an enumeration of rationals in (0,4/2/2) and
t;,;i =1,2,... be an enumeration of rationals in (\/5/2,1). Let X be a random variable with

1
P{X = Si} = P{X = ti} = prrey
[0,1], continuous at irrationals, and F(v/2/2) = 1/2. Then v2/2 is the unique median of X, even
though P{X = v/2/2} = 0.

i =1,2,.... The distribution function F of X is strictly increasing on
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4. Discussion and Conclusions

In this paper, the authors presented a unified probabilistic approach that can be used to determine
the minimum value of a broad class of functions represented by equation (5), where the sequence
a;,,i = 1,2, ...is appropriately ordered. However, as discussed in Case 3 in Section 3, if the sequence
is not ordered, and this method may not be applicable. Research on addressing this issue is currently
underway.

Quantile regression was first introduced by Koenker & Bassett (1978) in the field of econometrics. One
of the most notable cases of quantile regression is the median regression estimator, which minimises
the sum of absolute errors. This study provides a theoretical justification for this method.
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Zunifikowane probabilistyczne podejscie do minimalizacji sumy wartosci
bezwzglednych

Streszczenie
Cel: Propozycja nowej metody minimalizacji funkcji sum wartosci bezwzglednych.

Metodyka: Suma wartosci bezwzglednych jest standaryzowana w taki sposéb, aby suma parametrow
byta réwna 1. Wéwczas suma wartosci bezwzglednych przyjmuje wartosci takie, ze E|X — a|, gdzie X
jest zmienng losowa.

Wyniki: Dowolna mediana X minimalizuje funkcje E|X — a|. Aby zminimalizowa¢ funkcje, wystarczy
znalez¢ dowolng mediane X.

Implikacje i rekomendacje: Metoda przedstawiona w artykule ma zastosowanie do minimalizacji
szerokiej rodziny funkcji.

Oryginalnosé/wartosé: W naszej pracy wykorzystano metode probabilistyczng do rozwigzania
problemdw optymalizacyjnych.

Stowa kluczowe: mediana, rozktad prawdopodobienistwa, warto$¢ minimalna
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