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Abstract 

Aim: Introduce a novel method for minimizing functions in the form of a sum of absolute values. 

Methodology: The sum of absolute values can be standardized so that the sum of the coefficients 
equals 1. In this case, the sum of absolute values takes the form 𝐸𝐸|𝑋𝑋 − 𝑎𝑎|, where 𝑋𝑋  is a random 
variable. 
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Results: Any median of 𝑋𝑋 is a minimiser of the function 𝐸𝐸|𝑋𝑋 − 𝑎𝑎|. To minimise the function, it suffices 
to find any median of 𝑋𝑋. 

Implications and recommendations: The method introduced in this paper can be applied to minimise 
a large family of functions. 

Originality/value: Our work uses the probabilistic method to solve optimization problems. 

Keywords: median, probability distribution, minimum value 

1. Introduction  

To find the minimum of the following function (Xu, 2012, p. 54, Example 1): 

 𝑓𝑓(𝑥𝑥) = |𝑥𝑥| + 2|𝑥𝑥 − 1| + |𝑥𝑥 − 2| + |𝑥𝑥 − 4| + |𝑥𝑥 − 6| + 2|𝑥𝑥 − 10|,  𝑥𝑥 ∈ ℝ. (1) 

Before approaching this problem, let us study an easier one. Suppose a and b are two constants and 
 a < b. Consider function:  

 𝑓𝑓(𝑥𝑥) = |𝑥𝑥 − 𝑎𝑎| + |𝑥𝑥 − 𝑏𝑏|,  𝑥𝑥 ∈ ℝ. (2) 

Lemma 1. An 𝑥𝑥 minimises 𝑓𝑓 in (2) if and only if 𝑥𝑥 ∈ [𝑎𝑎, 𝑏𝑏]. 

Proof. One can write 𝑓𝑓 as 

 
𝑓𝑓(𝑥𝑥) = �

(𝑎𝑎 + 𝑏𝑏) − 2𝑥𝑥
𝑏𝑏 − 𝑎𝑎

2𝑥𝑥 − (𝑎𝑎 + 𝑏𝑏)

 if 𝑥𝑥 ≤ 𝑎𝑎,
         if 𝑎𝑎 < 𝑥𝑥 ≤ 𝑏𝑏,

 if 𝑏𝑏 < 𝑥𝑥.
 

 

The minimum of 𝑓𝑓 is 𝑏𝑏 –  𝑎𝑎, and 𝑓𝑓(𝑥𝑥) takes this value if and only if 𝑥𝑥 ∈ [𝑎𝑎, 𝑏𝑏]. 

Lemma 1 indicates that the set of minimisers of 𝑓𝑓 in (2) is exactly the closed interval [𝑎𝑎, 𝑏𝑏]. In particular, 
𝑓𝑓 achieves its minimum at both endpoints of the interval.  

Theorem 2. Given the sequence of real numbers 𝑎𝑎1 < 𝑎𝑎2 < ⋯ < 𝑎𝑎𝑛𝑛,  let 

 𝑓𝑓(𝑥𝑥) = |𝑥𝑥 − 𝑎𝑎1| + |𝑥𝑥 − 𝑎𝑎2| + ⋯+ |𝑥𝑥 − 𝑎𝑎𝑛𝑛|,  𝑥𝑥 ∈ ℝ. (3) 

(a) If 𝑛𝑛 is odd, 𝑓𝑓 achieves its minimum at 𝑥𝑥 = 𝑎𝑎(𝑛𝑛+1)/2. 

(b) If 𝑛𝑛 is even, 𝑓𝑓 achieves its minimum at any 𝑥𝑥 ∈ �𝑎𝑎𝑛𝑛/2,𝑎𝑎(𝑛𝑛+2)/2�. 

The following proof is of Nahin (2004). One can write 𝑓𝑓 as 

 𝑓𝑓(𝑥𝑥) = (|𝑥𝑥 − 𝑎𝑎1| + |𝑥𝑥 − 𝑎𝑎𝑛𝑛|) + (|𝑥𝑥 − 𝑎𝑎2| + |𝑥𝑥 − 𝑎𝑎𝑛𝑛−1|) + …  

From Lemma 1, if 𝑥𝑥 minimises the sum within each pair of parentheses, it will minimise 𝑓𝑓 in (3). If 𝑛𝑛 is 
odd, only 𝑎𝑎(𝑛𝑛+1)/2  does the work. If 𝑛𝑛  is even, any 𝑥𝑥 ∈ �𝑎𝑎𝑛𝑛/2,𝑎𝑎(𝑛𝑛+2)/2� works. Note that 𝑎𝑎(𝑛𝑛+1)/2 
[respectively, �𝑎𝑎𝑛𝑛/2 + 𝑎𝑎(𝑛𝑛+2)/2�/2 ] is the median of the sequence 𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑛𝑛  when 𝑛𝑛  is odd 
(respectively, even). In the following sections we show that if 𝑛𝑛 is event, it is more meaningful to 
designate any point within �𝑎𝑎𝑛𝑛/2,𝑎𝑎(𝑛𝑛+2)/2� as a median of the sequence. 

Suppose 𝑓𝑓 is of the form: 

𝑓𝑓(𝑥𝑥) = 𝑚𝑚1|𝑥𝑥 − 𝑎𝑎1| +𝑚𝑚2|𝑥𝑥 − 𝑎𝑎2| + ⋯+ 𝑚𝑚𝑛𝑛|𝑥𝑥 − 𝑎𝑎𝑛𝑛|,  𝑥𝑥 ∈ ℝ,  
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where 𝑚𝑚𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛, are positive integers, and 𝑎𝑎1 < 𝑎𝑎2 < ⋯ < 𝑎𝑎𝑛𝑛. Using the same method as above 
one can prove that 𝑓𝑓 achieves its minimum at any median of the following sequence: 

𝑎𝑎1, … ,𝑎𝑎1����� , 𝑎𝑎2, … ,𝑎𝑎2,������� , … , 𝑎𝑎𝑛𝑛, … ,𝑎𝑎𝑛𝑛������� .
𝑚𝑚1 𝑚𝑚2 𝑚𝑚𝑛𝑛

 

The function at the beginning of this section can be written as: 

𝑓𝑓(𝑥𝑥) = |𝑥𝑥| + |𝑥𝑥 − 1| + |𝑥𝑥 − 1| + |𝑥𝑥 − 2| + |𝑥𝑥 − 4| + |𝑥𝑥 − 6| + |𝑥𝑥 − 10| + |𝑥𝑥  − 10|. 

Considering the sequence: 

0,  1,  1,  2,  4,  6,  10,  10, 

one can see that 𝑓𝑓 achieves its minimum at any 𝑥𝑥 ∈ [2,4]. 

A generalisation of Theorem 2, where coefficients are positive real numbers, has also been discussed 
in the literature (cf. Bogomolny (2021)).  

Theorem 3. Given a sequence of real numbers 𝑎𝑎1 < 𝑎𝑎2 < ⋯ < 𝑎𝑎𝑛𝑛, and a sequence of positive numbers 
𝛽𝛽1,𝛽𝛽2, … ,𝛽𝛽𝑛𝑛, let  

 𝑓𝑓(𝑥𝑥) = 𝛽𝛽1|𝑥𝑥 − 𝑎𝑎1| + 𝛽𝛽2|𝑥𝑥 − 𝑎𝑎2| + ⋯+ 𝛽𝛽𝑛𝑛|𝑥𝑥 − 𝑎𝑎𝑛𝑛|, 𝑥𝑥 ∈ ℝ. (4) 

Then 𝑓𝑓  achieves its minimum at one of the intervals [𝑎𝑎𝑘𝑘 ,𝑎𝑎𝑘𝑘+1]  if and only if the coefficients 
𝛽𝛽1,𝛽𝛽2, … ,𝛽𝛽𝑛𝑛, can be split into two groups with equal sums. Otherwise, the minimum is achieved at one 
of the given points 𝑎𝑎𝑖𝑖. 

Remark 1. It seems that the conclusion of Theorem 3, as summarised in Bogomolny (2021), is not 
rigorous. For example, consider the function: 

𝑓𝑓(𝑥𝑥) = (𝜋𝜋−2)
4

|𝑥𝑥 − 1| + 1
3

|𝑥𝑥 − 2| + (4−𝜋𝜋)
4

|𝑥𝑥 − 3| + 1
6

|𝑥𝑥 − 4|, x ∈ ℝ, 

then 𝛽𝛽1 + 𝛽𝛽3 = 𝛽𝛽2 + 𝛽𝛽4 = 1/2. However, 𝑥𝑥 = 2 is the unique minimiser of 𝑓𝑓.  

Let 𝑆𝑆 = ∑ 𝛽𝛽𝑗𝑗𝑛𝑛
𝑗𝑗=1  in (4). Since minimising 𝑓𝑓  in (4) is the same as minimising 𝑓𝑓/𝑆𝑆 , without loss of 

generality, assume 𝑆𝑆 = 1.  

Theorem 3 only considers the sum of finite terms. One can also consider minimising functions of the 
form: 

 
𝑓𝑓(𝑥𝑥) = �𝛽𝛽𝑖𝑖|𝑥𝑥 − 𝑎𝑎𝑖𝑖|,𝛽𝛽𝑖𝑖 > 0, 𝑖𝑖 = 1,2, … ,

∞

𝑖𝑖=1

 (5) 

where 𝑎𝑎𝑖𝑖, 𝑖𝑖 = 1,2,  are distinct. If ∑ 𝛽𝛽𝑖𝑖 = 1∞
𝑖𝑖=1 , thus 𝛽𝛽𝑖𝑖, 𝑖𝑖 = 1,2,  is a standardised sequence of 

coefficients. The authors make this assumption in the following sections. 

Besides being the sum of infinitely many terms, (5) is very different from (4). Since there are only finite 
terms in (4), one can always assume 𝑎𝑎1 < 𝑎𝑎2 < ⋯ < 𝑎𝑎𝑛𝑛 by rearranging them. However, this operation 
may be not possible in (5). For example, assume 𝑎𝑎𝑖𝑖 = (−1)𝑖𝑖/i, i = 1,2, ... One cannot rearrange the 
sequence to make it monotone; another difference is the set of minimisers. Theorem 3 indicates that 
at least one of the elements in {𝑎𝑎𝑖𝑖: 𝑖𝑖 = 1, … ,𝑛𝑛} is a minimiser of 𝑓𝑓 in (3), however this may be not true 
for 𝑓𝑓 in (5). Example 3 in Section 3 shows a case where the unique minimiser of 𝑓𝑓 is not an element in 
{𝑎𝑎𝑖𝑖: 𝑖𝑖 = 1,2, … }. 
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The purpose of this paper was to introduce a united probabilistic approach which can be used for 
minimising functions of the sum of finite or countably infinite terms of absolute values. The conclusion 
of Theorem 3 is a special case of the obtained result. 

2. Theory 

First, let us review the definition of median in probability theory.  

Definition 1. Given a real-valued random variable 𝑌𝑌, real number m is called a median of Y if 

𝑃𝑃{𝑌𝑌 ≤ 𝑚𝑚} ≥ 1/2   and   𝑃𝑃{𝑌𝑌 ≥ 𝑚𝑚} ≥ 1/2,  

where 𝑃𝑃(𝐸𝐸) denotes the probability of event 𝐸𝐸. Given probability distribution function 𝐹𝐹, 𝑚𝑚 is called 
a median of 𝐹𝐹 if 𝐹𝐹(𝑚𝑚) ≥ 1/2 and 𝐹𝐹(𝑚𝑚−) ≤ 1/2. 

This definition was given in Problem 1.7 in Lehmann and Casella (1998, p. 62). For example, suppose 
the distribution of 𝑌𝑌  is 𝑃𝑃{𝑌𝑌 = 1} = 𝑃𝑃{𝑌𝑌 = 2} = 1/2 . Then any point in [1,2]  is a median of 𝑌𝑌 . 
Suppose the distribution of 𝑌𝑌 is 𝑃𝑃{𝑌𝑌 = 1} = 1/3, 𝑃𝑃{𝑌𝑌 = 2} = 𝑃𝑃{𝑌𝑌 = 3} = 1/4, and 𝑃𝑃{𝑌𝑌 = 5} = 1/6. 
Then 𝑌𝑌 has a unique median 2. 

First, let us prove the existence of median(s) for any real-valued random variable. 

Theorem 4. Any real-valued random variable 𝑌𝑌 has at least one median, its set of medians is a finite 
closed interval. For any 𝑎𝑎 ∈ ℝ, this paper regards the singleton {𝑎𝑎} as a closed interval [𝑎𝑎,𝑎𝑎]. 

Proof. Let 𝐴𝐴 = {𝑚𝑚 ∈ ℝ:𝑃𝑃{𝑌𝑌 ≤ 𝑚𝑚} ≥ 1/2}  and 𝐵𝐵 = {𝑚𝑚 ∈ ℝ:𝑃𝑃{𝑌𝑌 ≥ 𝑚𝑚} ≥ 1/2} . Then 𝐴𝐴 ∩ 𝐵𝐵  is the 
set of medians of 𝑌𝑌. Since lim

𝑚𝑚→−∞
𝑃𝑃{𝑌𝑌 ≥ 𝑚𝑚} = lim

𝑚𝑚→∞
𝑃𝑃{𝑌𝑌 ≤ 𝑚𝑚} = 1, both 𝐴𝐴 and 𝐵𝐵 are nonempty. Let 

m1 = inf A and m2 = sup B. If 𝑚𝑚1 ∉ 𝐴𝐴, then 𝑃𝑃{𝑌𝑌 ≤ 𝑚𝑚1} < 1/2, and there exists an 𝜀𝜀 > 0 such that 
𝑃𝑃{𝑌𝑌 ≤ 𝑚𝑚1 + 𝜀𝜀} < 1/2, a contradiction. For any 𝜀𝜀 > 0, 𝑃𝑃{𝑌𝑌 ≥ 𝑚𝑚2 − 𝜀𝜀} ≥ 1/2, which means that 
𝑃𝑃{𝑌𝑌 < 𝑚𝑚2 − 𝜀𝜀} < 1/2. Since 𝜀𝜀 > 0 is arbitrary, one has 𝑃𝑃{𝑌𝑌 < 𝑚𝑚2} < 1/2 and 𝑃𝑃{𝑌𝑌 ≥ 𝑚𝑚2} ≥ 1/2, 
which means 𝑚𝑚2 ∈ 𝐵𝐵. 

One can prove 𝑚𝑚1 ≤ 𝑚𝑚2. Suppose it is not. Then 𝑃𝑃{𝑌𝑌 ≤ 𝑚𝑚2} < 1/2 and there exists an 𝜀𝜀 > 0 such 
that 𝑃𝑃{𝑌𝑌 ≤ 𝑚𝑚2 + 𝜀𝜀} < 1/2, which means that  𝑃𝑃{𝑌𝑌 > 𝑚𝑚2 + 𝜀𝜀} > 1/2, a contradiction. 

It is clear that 𝑚𝑚1,𝑚𝑚2 ∈ 𝐴𝐴 ∩ 𝐵𝐵 , and if 𝑚𝑚 ∈ [𝑚𝑚1,𝑚𝑚2] , then 𝑚𝑚 ∈ 𝐴𝐴 ∩ 𝐵𝐵 . If 𝑚𝑚 < 𝑚𝑚1 , then 𝑚𝑚 ∉ 𝐴𝐴 . 
If 𝑚𝑚 > 𝑚𝑚2, 𝑚𝑚 ∉ 𝐵𝐵, therefore 𝐴𝐴 ∩ 𝐵𝐵 = [𝑚𝑚1,𝑚𝑚2]. QED. 

Remark 2. This theorem is Part (b) of Problem 1.7 in Lehmann and Casella (1998, p. 62); another proof 
can be found in Shao (2005). Theorem 3 indicates that 𝑌𝑌 has either a unique median or uncountably 
infinitely many medians. 

Theorem 5. Given a random variable 𝑌𝑌 and 𝑥𝑥 ∈ ℝ, let 𝐸𝐸|𝑌𝑌 − 𝑥𝑥| be the expectation of |𝑌𝑌 − 𝑥𝑥|. 

(a) 𝐸𝐸|𝑌𝑌 − 𝑥𝑥| ≥ 𝐸𝐸|𝑌𝑌 −𝑚𝑚| if 𝑚𝑚 is a median of 𝑌𝑌. 

(b) If 𝐸𝐸|𝑌𝑌| < ∞ and 𝑥𝑥0 minimises 𝑓𝑓(𝑥𝑥) = 𝐸𝐸|𝑌𝑌 − 𝑥𝑥|, 𝑥𝑥 ∈ ℝ, then 𝑥𝑥0 is a median of 𝑌𝑌. 

Proof. (a) If 𝐸𝐸|𝑌𝑌| = +∞, then 𝐸𝐸|𝑌𝑌 − 𝑥𝑥| ≥ 𝐸𝐸|𝑌𝑌| − 𝑥𝑥 = +∞ for any 𝑥𝑥 ∈ ℝ. The conclusion is trivial. 
Without loss of generality, assume 𝐸𝐸|𝑌𝑌| < ∞. Let 𝑚𝑚 be any median of 𝑌𝑌. First assume 𝑥𝑥 > 𝑚𝑚. Then 

(i) if 𝑌𝑌 > 𝑥𝑥, 

|𝑌𝑌 − 𝑥𝑥| − |𝑌𝑌 −𝑚𝑚| = −(𝑥𝑥 −𝑚𝑚);  
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(ii) if 𝑚𝑚 < 𝑌𝑌 ≤ 𝑥𝑥,  

|𝑌𝑌 − 𝑥𝑥| − |𝑌𝑌 −𝑚𝑚| = 𝑥𝑥 + 𝑚𝑚 − 2𝑌𝑌 ≥ 𝑥𝑥 + 𝑚𝑚 − 2𝑥𝑥 = −(𝑥𝑥 −𝑚𝑚);  and  

(iii) if 𝑌𝑌 ≤ 𝑚𝑚,  

|𝑌𝑌 − 𝑥𝑥| − |𝑌𝑌 −𝑚𝑚| = (𝑥𝑥 −𝑚𝑚). 

Therefore, 

𝐸𝐸|𝑌𝑌 − 𝑥𝑥| − 𝐸𝐸|𝑌𝑌 −𝑚𝑚| ≥ (𝑥𝑥 −𝑚𝑚)[𝑃𝑃{𝑌𝑌 ≤ 𝑚𝑚} − 𝑃𝑃{𝑌𝑌 > 𝑚𝑚}]
= (𝑥𝑥 −𝑚𝑚)[2𝑃𝑃{𝑌𝑌 ≤ 𝑚𝑚} − 1] ≥ 0.  

Similarly, if 𝑥𝑥 < 𝑚𝑚,  

𝐸𝐸|𝑌𝑌 − 𝑥𝑥| − 𝐸𝐸|𝑌𝑌 −𝑚𝑚| ≥ (𝑚𝑚 − 𝑥𝑥)[𝑃𝑃{𝑌𝑌 ≥ 𝑚𝑚} − 𝑃𝑃{𝑌𝑌 < 𝑚𝑚}]
= (𝑚𝑚 − 𝑥𝑥)[2𝑃𝑃{𝑌𝑌 ≥ 𝑚𝑚} − 1] ≥ 0.  

Hence, 𝐸𝐸|𝑌𝑌 − 𝑥𝑥| ≥ 𝐸𝐸|𝑌𝑌 −𝑚𝑚| for any 𝑥𝑥 ∈ ℝ. 

(b) Let [𝑚𝑚1,𝑚𝑚2] be the set of medians of 𝑌𝑌. Suppose 𝑥𝑥0 > 𝑚𝑚2. Then 𝑃𝑃{𝑌𝑌 ≥ 𝑥𝑥0} < 1/2, and 

𝐸𝐸|𝑌𝑌 − 𝑥𝑥0| − 𝐸𝐸|𝑌𝑌 −𝑚𝑚2| = (𝑥𝑥0 − 𝑚𝑚2)[2𝑃𝑃{𝑌𝑌 ≤ 𝑚𝑚2} − 1] + 2𝐸𝐸[(𝑥𝑥0 − 𝑌𝑌)𝟏𝟏{𝑚𝑚2<𝑌𝑌<𝑥𝑥0}].  

If 𝑃𝑃{𝑌𝑌 ≤ 𝑚𝑚2} > 1/2, then 𝐸𝐸|𝑌𝑌 − 𝑥𝑥0|− 𝐸𝐸|𝑌𝑌 −𝑚𝑚2| > 0. Let 𝑥𝑥1 = (𝑚𝑚2 + 𝑥𝑥0)/2. If 𝑃𝑃{𝑌𝑌 ≤ 𝑚𝑚2} = 1/2, 
then 

𝐸𝐸|𝑌𝑌 − 𝑥𝑥0| − 𝐸𝐸|𝑌𝑌 −𝑚𝑚2| = 2𝐸𝐸�(𝑥𝑥0 − 𝑌𝑌)𝟏𝟏𝑚𝑚2<𝑌𝑌<𝑥𝑥0�
≥ 2𝐸𝐸�(𝑥𝑥0 − 𝑌𝑌)𝟏𝟏𝑚𝑚2<𝑌𝑌<𝑥𝑥1�
≥ 2(𝑥𝑥0 − 𝑥𝑥1)𝑃𝑃{𝑚𝑚2 < 𝑌𝑌 < 𝑥𝑥1}
≥ 2(𝑥𝑥0 − 𝑥𝑥1)[𝑃𝑃{𝑌𝑌 < 𝑥𝑥1} − 𝑃𝑃{𝑌𝑌 > 𝑚𝑚2}]
> 0. 

Similarly, one has 𝐸𝐸|𝑌𝑌 − 𝑥𝑥0| − 𝐸𝐸|𝑌𝑌 −𝑚𝑚1| > 0 if 𝑥𝑥0 < 𝑚𝑚1. QED. 

Remark 3. Part (a) of Theorem 5 is Problem 1.8 in Lehmann and Casella (1998, p. 62); another proof 
can be found in Shao (2005). This theorem means that if 𝐸𝐸|𝑌𝑌| < ∞, then 𝑥𝑥0 minimises function 𝑓𝑓(𝑥𝑥) =
𝐸𝐸|𝑌𝑌 − 𝑥𝑥| f and only if 𝑥𝑥0 is a median of 𝑌𝑌. 

3. Applications 

Theorem 5 offers a general united approach to finding minimum of functions in (4) and (5). Let 𝑌𝑌 be  
a random variable with probability distribution 𝑃𝑃{𝑌𝑌 = 𝑎𝑎𝑖𝑖} = 𝛽𝛽𝑖𝑖, 𝑖𝑖 = 1,2, …. Then 𝑓𝑓 in (4) or (5) is the 
same as 

𝑓𝑓(𝑥𝑥) = 𝐸𝐸|𝑌𝑌 − 𝑥𝑥|. 

Since 𝑓𝑓(𝑥𝑥) = ∞  if 𝐸𝐸|𝑌𝑌| = ∞ , only consider the case that 𝐸𝐸|𝑌𝑌| < ∞ , i.e. ∑ 𝛽𝛽𝑖𝑖|𝑎𝑎𝑖𝑖| < ∞∞
𝑖𝑖=1 . From 

Theorem 5 it follows that the key step in minimising 𝑓𝑓 in (5) is to find a median of 𝑌𝑌. For this purpose, 
the authors considered several cases: 

Case 1: Assume 𝑎𝑎𝑖𝑖 , 𝑖𝑖 = 1,2, …, is a strictly monotone sequence. 

(i) Assume 𝑎𝑎1 < 𝑎𝑎2 < ⋯. For any 𝑥𝑥 ∈ ℝ, 

𝑃𝑃{𝑌𝑌 ≤ 𝑥𝑥} = � 𝛽𝛽𝑖𝑖
𝑖𝑖:𝑎𝑎𝑖𝑖≤𝑥𝑥

    and    𝑃𝑃{𝑌𝑌 ≥ 𝑥𝑥} = � 𝛽𝛽𝑖𝑖.
𝑖𝑖:𝑎𝑎𝑖𝑖≥𝑥𝑥
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Let 

𝑘𝑘𝑙𝑙 = inf�𝑗𝑗 ≥ 1:�𝛽𝛽𝑖𝑖

𝑗𝑗

𝑖𝑖=1

≥ 1/2�      and    𝑘𝑘𝑢𝑢 = sup

⎩
⎨

⎧
𝑗𝑗 ≥ 1:�𝛽𝛽𝑖𝑖

∞

𝑖𝑖=𝑗𝑗

≥ 1/2

⎭
⎬

⎫
 

Since 

�β𝑖𝑖

∞

𝑖𝑖=𝑘𝑘𝑙𝑙

= 1 − � β𝑖𝑖

𝑘𝑘𝑙𝑙−1

𝑖𝑖=1

> 1 − 1/2 = 1/2, 

Hence 
𝑘𝑘𝑙𝑙 ≤ 𝑘𝑘𝑢𝑢. 

If ∑ 𝛽𝛽𝑖𝑖
𝑘𝑘𝑙𝑙
𝑖𝑖=1 > 1/2 then ∑ 𝛽𝛽𝑖𝑖∞

𝑖𝑖=𝑘𝑘𝑙𝑙+1 < 1/2, which means 𝑘𝑘𝑢𝑢 < 𝑘𝑘𝑙𝑙 + 1. This implies 𝑘𝑘𝑢𝑢 = 𝑘𝑘𝑙𝑙 , and 𝑎𝑎𝑘𝑘𝑙𝑙  is 
the unique median of 𝑌𝑌. If ∑ 𝛽𝛽𝑖𝑖

𝑘𝑘𝑙𝑙
𝑖𝑖=1 = 1/2, then ∑ 𝛽𝛽𝑖𝑖∞

𝑖𝑖=𝑘𝑘𝑙𝑙+1 = 1/2, which means 𝑘𝑘𝑢𝑢 = 𝑘𝑘𝑙𝑙 + 1, and the 
set of medians of 𝑌𝑌 is [𝑎𝑎𝑘𝑘𝑙𝑙 ,𝑎𝑎𝑘𝑘𝑢𝑢]. 

In this case, at least one of the elements in {𝑎𝑎𝑖𝑖: 𝑖𝑖 = 1,2, … } is a median of 𝑌𝑌. Theorem 3 is a special 
case of this result. 

Example 1. Consider 𝑓𝑓 in (1). The standardised sequence of coefficients is 

1
8

,
1
4

,
1
8

,
1
8

,
1
8

,
1
4

. 

It is clear that 𝑘𝑘𝑙𝑙 = 3 and 𝑘𝑘𝑢𝑢 = 4, therefore, 𝑓𝑓 is minimised when 𝑥𝑥 = 𝑎𝑎3 = 2. 

Example 2. Let 

𝑓𝑓(𝑥𝑥) =
1
4

|𝑥𝑥 − 1| +
3
4
�2−𝑖𝑖+1|𝑥𝑥 − 𝑖𝑖|

∞

𝑖𝑖=2

,   𝑥𝑥 ∈ ℝ. 

Then 𝑘𝑘𝑙𝑙 = 𝑘𝑘𝑢𝑢 = 2 and 2 is the unique median of 𝑌𝑌. The minimum of 𝑓𝑓 is 1. 

(ii) Assume 𝑎𝑎1 > 𝑎𝑎2 > ⋯. Let 𝑌𝑌′ = −𝑌𝑌, then 

𝑓𝑓(𝑥𝑥) = 𝐸𝐸|𝑌𝑌 − 𝑥𝑥| = 𝐸𝐸|−𝑌𝑌 − (−𝑥𝑥)| = 𝐸𝐸 �𝑌𝑌′ − (−𝑥𝑥)�. 

One can first find any median 𝑚𝑚 of 𝑌𝑌′ using the method above, then −𝑚𝑚 minimises 𝑓𝑓. At least one of 
the elements in {𝑎𝑎𝑖𝑖: 𝑖𝑖 = 1,2, … } is a median of 𝑌𝑌. 

Case 2: Assume |𝑎𝑎𝑖𝑖|, 𝑖𝑖 = 1,2, …, is a monotone sequence. 

(i) Assume |𝑎𝑎1| ≤ |𝑎𝑎2| ≤ ⋯. Let 

𝑆𝑆1 = � 𝛽𝛽𝑖𝑖
𝑖𝑖: 𝑎𝑎𝑖𝑖≤0

   and   𝑆𝑆2 = � 𝛽𝛽𝑖𝑖
𝑖𝑖: 𝑎𝑎𝑖𝑖>0

. 

If 𝑆𝑆1 ≥ 1/2, let 

𝑘𝑘𝑙𝑙 = sup�𝑗𝑗: 𝑎𝑎𝑗𝑗 < 0,   � 𝛽𝛽𝑖𝑖
𝑖𝑖: 𝑖𝑖≥𝑗𝑗, 𝑎𝑎𝑖𝑖≤0

≥
1
2�

. 

Then 𝑎𝑎𝑘𝑘𝑙𝑙  is a median of 𝑌𝑌. 
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If 𝑆𝑆1 < 1/2, let 

𝑘𝑘𝑙𝑙 = inf�𝑗𝑗:𝑎𝑎𝑗𝑗 ≥ 0,  𝑆𝑆1 + � 𝛽𝛽𝑖𝑖
𝑖𝑖: 𝑖𝑖≤𝑗𝑗, 𝑎𝑎𝑖𝑖>0

≥
1
2�

. 

Then 𝑎𝑎𝑘𝑘𝑙𝑙  is a median of 𝑌𝑌. 

(ii) Assume |𝑎𝑎1| ≥ |𝑎𝑎2| ≥ ⋯. Using a similar idea, one can easily find a median of 𝑌𝑌 in {𝑎𝑎𝑖𝑖: 𝑖𝑖 = 1,2, … }. 

In these two cases, at least one of the elements in {𝑎𝑎𝑖𝑖: 𝑖𝑖 = 1,2, … } is a median of 𝑌𝑌 which minimises 𝑓𝑓. 
However, this may not be true in general cases. 

Case 3: Assume 𝑎𝑎𝑖𝑖 , 𝑖𝑖 = 1,2, …, is a general sequence. 

There are two challenges in this case: (i) generally there is no explicit way to find a median of 𝑌𝑌, and 
(ii) even if the median of 𝑌𝑌 is unique, it may not be any element in {𝑎𝑎𝑖𝑖: 𝑖𝑖 = 1,2, … }. The authors used 
the following example to show these challenges. 

Example 3. Let 𝑎𝑎1,𝑎𝑎2, …, be an enumeration of rationals in (0, 1). Let 𝑓𝑓 be in the form of (5). It was 
first proved that 𝑌𝑌 has a unique median 𝑚𝑚. Suppose is not, then let 𝑚𝑚1 < 𝑚𝑚2 be two medians of 𝑌𝑌. 
Since rationals are dense in (0, 1), 

1
2
≤ 𝑃𝑃{𝑌𝑌 ≤ 𝑚𝑚1} < 𝑃𝑃{𝑌𝑌 < 𝑚𝑚2} = 1 − 𝑃𝑃{𝑌𝑌 ≥ 𝑚𝑚2} ≤

1
2

, 

a contradiction. 

The median of 𝑌𝑌 may be rational or irrational. 

(i) Suppose 𝑎𝑎 is a rational in (0, 1). Let 𝛽𝛽(𝑎𝑎) = 𝑃𝑃{𝑌𝑌 = 𝑎𝑎}. If 𝛽𝛽(𝑎𝑎) ≥ 1/2, then 𝑎𝑎 is the median of 𝑌𝑌. If 
𝛽𝛽(𝑎𝑎) < 1/2, then 𝑎𝑎 is the median of 𝑌𝑌  if and only if 

� 𝛽𝛽𝑖𝑖
𝑖𝑖:𝑎𝑎𝑖𝑖<𝑎𝑎

≥
1
2
− 𝛽𝛽(𝑎𝑎)    and  � 𝛽𝛽𝑖𝑖

𝑖𝑖:𝑎𝑎𝑖𝑖>𝑎𝑎

≥
1
2
− 𝛽𝛽(𝑎𝑎). 

(ii) Suppose 𝑎𝑎 is an irrational in (0, 1). Then 𝑎𝑎 is the median of 𝑌𝑌 if and only if 

� 𝛽𝛽𝑖𝑖
𝑖𝑖:𝑎𝑎𝑖𝑖<𝑎𝑎

= � 𝛽𝛽𝑖𝑖
𝑖𝑖:𝑎𝑎𝑖𝑖>𝑎𝑎

=
1
2

. (6) 

Note that (6) holds only if 𝑎𝑎 is irrational. In this case, although 𝑌𝑌 is a rational-valued random variable, 
its unique median is irrational. 

Here is a numeric example. Let 𝑠𝑠𝑖𝑖, 𝑖𝑖 = 1,2, …  be an enumeration of rationals in (0,√2/2)  and  
𝑡𝑡𝑖𝑖, 𝑖𝑖 = 1,2, …  be an enumeration of rationals in (√2/2,1) . Let 𝑋𝑋  be a random variable with  
𝑃𝑃{𝑋𝑋 = 𝑠𝑠𝑖𝑖} = 𝑃𝑃{𝑋𝑋 = 𝑡𝑡𝑖𝑖} = 1

2𝑖𝑖+1
, 𝑖𝑖 = 1,2, …. The distribution function 𝐹𝐹  of 𝑋𝑋  is strictly increasing on 

[0, 1], continuous at irrationals, and 𝐹𝐹(√2/2) = 1/2. Then √2/2 is the unique median of 𝑋𝑋, even 
though 𝑃𝑃{𝑋𝑋 = √2/2} = 0. 



Changyong Feng, Honghong Liu, Ethan Poon, Ge Feng 8 
 

4. Discussion and Conclusions 

In this paper, the authors presented a unified probabilistic approach that can be used to determine 
the minimum value of a broad class of functions represented by equation (5), where the sequence 
𝑎𝑎𝑖𝑖 , , 𝑖𝑖 = 1,2, … is appropriately ordered. However, as discussed in Case 3 in Section 3, if the sequence 
is not ordered, and this method may not be applicable. Research on addressing this issue is currently 
underway. 

Quantile regression was first introduced by Koenker & Bassett (1978) in the field of econometrics. One 
of the most notable cases of quantile regression is the median regression estimator, which minimises 
the sum of absolute errors. This study provides a theoretical justification for this method. 
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Zunifikowane probabilistyczne podejście do minimalizacji sumy wartości 
bezwzględnych 

Streszczenie 

Cel: Propozycja nowej metody minimalizacji funkcji sum wartości bezwzględnych. 

Metodyka: Suma wartości bezwzględnych jest standaryzowana w taki sposób, aby suma parametrów 
była równa 1. Wówczas suma wartości bezwzględnych przyjmuje wartości takie, że 𝐸𝐸|𝑋𝑋 − 𝑎𝑎|, gdzie X 
jest zmienną losową. 

Wyniki: Dowolna mediana X minimalizuje funkcję E|X – a|. Aby zminimalizować funkcję, wystarczy 
znaleźć dowolną medianę X. 

Implikacje i rekomendacje: Metoda przedstawiona w artykule ma zastosowanie do minimalizacji 
szerokiej rodziny funkcji. 

Oryginalność/wartość: W naszej pracy wykorzystano metodę probabilistyczną do rozwiązania 
problemów optymalizacyjnych. 

Słowa kluczowe: mediana, rozkład prawdopodobieństwa, wartość minimalna 

https://www.cut-the-knot.org/m/Algebra/MinimumWithAbsoluteValue.shtml
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