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Abstract 

Aim: Outlier detection is a key part of every data analysis. Although there are many definitions of 
outliers that can be found in the literature, all of them emphasise that outliers are objects that are in 
some way different from other objects in the dataset. There are many different approaches that have 
been proposed, compared, and analysed for the case of classical data. However, there are only few 
studies that deal with the problem of outlier detection in symbolic data analysis. The paper aimed to 
propose how to adapt isolation forest for symbolic data cases. 

Methodology: An isolation forest for symbolic data is used to detect outliers in four different artificial 
datasets with a known cluster structure and a known number of outliers 

Results: The results show that the isolation forest for symbolic data is a fast and efficient tool for outlier 
mining. 

Implications and recommendations: As the isolation forest for symbolic data appears to be an efficient 
tool for outlier detection for artificial data, further studies should focus on real data sets that contain 
outliers (i.e. credit card fraud dataset), and this approach should be compared with other outlier 
mining tools (i.e. DBCSAN). The authors recommend using the same initial settings for the isolation 
forest for symbolic data as the settings that are proposed for the isolation forest for classical data. 
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Originality/value: This paper is the first of its kind, focusing not only on the problem of outlier 
detection in general, but also extending the well-known isolation forest model for symbolic data cases. 

Keywords: symbolic data analysis, isolation forest, outliers 

1. Introduction 

Outlier detection plays a very important role in statistical analysis and data mining. Outlier detection 
is also one of the opening steps in data analysis. A large variety of outlier detection techniques have 
been developed in different areas (see for example Aggarwal, 2017; Ayadi et al., 2017; Chandola et al., 
2009). However, there are only a few methods and techniques applied for outlier detection for 
symbolic data analysis. 

This paper presents an adaptation of isolation forests for outlier detection in symbolic interval-valued 
data and compares their effectiveness with the well-known DBSCAN algorithm that is also capable of 
detecting outliers (see e.g.  Thang and Kim, 2011).  This paper is organized as follows: the next section 
presents different outlier definitions and briefly describes outlier mining techniques; Section 3 
presents symbolic objects and variables, with a special focus on symbolic interval-valued data, 
followed by an adaptation of isolation forests for symbolic data; Section 4 shows simulation results 
where isolation forests are compared to DBSCAN algorithm results. The final part of the paper contains 
the concluding remarks. 

Outliers are also called anomalies, abnormalities, aberrations, contaminants, deviants, discordant 
observations, exceptions, peculiarities, or surprises in some applications (Aggrawal, 2017; Chandola 
et al., 2009). There are many different outlier definitions in the literature. In Ayadi et. al. (2017) there 
are twelve different interpretations of outliers. This shows that the outlier definition is a complex, and 
there is no single one that can be seen as ‘the best’. Table 1 presents these definitions.  

Table 1. Outlier definitions in the literature 

References Outlier definitions 

Anscombe and Guttman (1960) An outlier is an observation which is suspected of being partially or wholly irrelevant 
because it is not generated by the stochastic model. 

Grubbs (1969) An outlying observation, or outlier, is one that appears to deviate markedly from other 
members of the sample in which it occurs. 

Hawkings (1980) An outlier is an observation, which deviates so much from other observations as to 
arouse suspicions that it was generated by a different mechanism. 

Barnett and Lewis (1994) An observation (or subset of observations) which appears to be inconsistent with the 
remainder of that set of data. 

Breunig et al. (2000) Outliers are points that lie in the lower local density with respect to the density of its 
local neighbourhood. 

Jiang et al. (2001) Outliers are points that do not belong to clusters of a data set or as clusters that are 
significantly smaller than other clusters. 

Hawkins et. al. (2002) Points that are not reproduced well at the output layer with high reconstruction error 
are considered as outliers. 

Hu and Sung (2003) A point can be considered as an outlier if its own density is relatively lower than its 
nearby high density pattern cluster, or its own density is relatively higher than its nearby 
low density pattern regularity. 

Muthukrishnan et al. (2004) If the removal of a point from the time sequence results in a sequence that can be 
represented more briefly than the original one, then the point is an outlier. 

Aggarwal and Yu (2005) A point is considered to be an outlier if in some lower-dimensional projection it is 
present in a local region of abnormal low density. 
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Cheng and Li (2006) A spatial-temporal point whose non-spatial attribute values are significantly different 
from those of other spatially and temporally referenced points in its spatial or/and 
temporal neighbourhoods is considered as a spatial-temporal outlier. 

Sadik and Gruenwald (2011) An outlier is a data point which is significantly different from other data points, or does 
not conform to the expected normal behaviour, or conforms well to a defined abnormal 
behaviour. 

Singh and Upadhyaya (2012) Outliers are patterns in data that do not conform to a well-defined notion of normal 
behaviour. 

Keller et al. (2012) Outliers are objects that highly deviate from regular objects in their local neigh- 
bourhood. 

Aguinis et al. (2013) Data points that deviate markedly from others. 

Branch et al. (2013) Outliers are observations whose probability of occurrence is extremely small. 

Smiti  (2020) Outliers are data instances that extremely deviate from well-defined norms of a data 
set or given concepts of expected behaviour. 

Source: own elaboration based on (Aguinis et al., 2013; Ayadi et al., 2017, p. 321; Branch et al. 2013; Keller et al., 2012; 
Singh and Upadhyaya, 2012; Smiti, 2020). 

Despite the differences, all definitions show that outliers can be seen as data points that are different 
from other data points and are not errors, mistakes or noise. Regardless of the definition of outlying 
objects, outlier detection in various areas is very important. Thus considerable research efforts in the 
survey of outlier detection have been made (see for example: Aggarwal, 2017; Aggarwal and Yu, 2005; 
Aguinis et al., 2013; Anscombe and Guttman, 1960; Ayadi et al., 2017; Barnett and Lewis, 1994; Branch 
et al., 2013; Breunig et al., 2000; Chandola et al., 2009; Wang et al., 2019).  

Different methods of outlier detection can be seen as more similar than others, therefore there are 
the following groups of outlier detection methods (Wang et al., 2009, pp. 107964-108000): 

• statistical-based, 
• distance-based, 
• density-based, 
• clustering-based, 
• graph-based, 
• ensemble-based, 
• learning-based. 

In the next part of the paper focuses on the isolation forest method which is one of the ensemble- 
-based methods used for outlier detection. Ensemble methods are used there to answer the question 
of whether an outlier should be linear-based, distance-based, density-based or any model-based. 
Ensemble methods are a useful tool when dealing with discriminant, regression or clustering problems. 

In general, one can say that ensemble techniques combine (aggregate, summarise) the results 
obtained from different models in order to produce more robust models and reduce the dependency 
of one model. Nevertheless, the ensemble approach is quite difficult to use when dealing with outliers. 
Lazarevic and Kumar (2005) proposed an adaptation of well-known bagging for classification problems, 
whilst Liu et al. (2008) suggested isolation forest for parallel techniques. Rayana et al. (2016) described 
an outlier mining technique for sequential methods. Zhao and Hryniewicki (2018) examined extreme 
gradient boosting for outlier detection (XGBOD method), and Micenková et al. (2015) proposed bagged 
outlier representation ensemble (BORE) for the hybrid methods. 
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2. Symbolic Objects and Variables and Methodology of Isolation Forests  
for Symbolic Data 

Unlike classical data where each object is being described by a set of qualitative or quantitative 
variables, symbolic data analysis allows that each object can be described not only by nominal, ordinal, 
interval or ratio variables, but also by symbolic interval-valued variables, symbolic multivalued 
variables, symbolic multivalued variables with weights and also symbolic histogram variables. What is 
more, symbolic objects and variables allow to take into account the relations between them, namely 
symbolic taxonomic variables (see e.g. Billard and Diday, 2006, pp. 7-30; Bock and Diday, 2000,  
pp. 2-3; Brito and Dias, 2022; Diday and Noirhomme-Fraiture, 2008, pp. 10-19). More details about 
symbolic variables and symbolic objects can be found in Billard and Diday (2006, pp. 7-66), Brito and 
Dias (2022, pp. 6-35), Bock and Diday (2000, pp. 2-8), Diday and Noirhomme-Fraiture (2008, pp. 3-30). 
Table 2 presents some examples of symbolic variables as well as their realisations. 

Table 2. Examples of symbolic variables and their realizations 

Variable name Sample realisations Variable type 
Preferred car price (in EUR) (10000, 30000); (15000, 45000); (12000, 

22000) 
symbolic interval-valued 
(non-disjoint intervals) 

Engine capacity for insurance 
purposes (in ccm) 

(up to 1000], (1000, 2000], (2000, 3000],  
(over 3000) 

symbolic interval-valued 
(disjoint variables) 

Preferred car colour {orange, yellow, blue, red} symbolic multi-valued 

Preferred car brand {Toyota (0.6), VW (0.4)}, {Audi (1.0)} 
{Skoda (0.5), Renault (0.4), Other (0.1)} 

symbolic multi-valued with 
weights 

Travel time (home-work) (minutes) {[40, 60] (0.6), [60, 85] (0.4)} symbolic histogram variable 

Age 25, 45, … ratio 

Gender F, M nominal 

Source: own elaboration. 

The isolation forest, which is an ensemble-based outlier detection method, generates many random 
isolation trees to partition the data, and computes for each isolation tree the number of tree nodes 
required to isolate each object. Anomalies are detected as objects that have the smallest average path 
lengths for all considered isolation trees. The main assumption is that outliers differ from other data 
points (non-outliers), and thus on average one needs fewer nodes to find them. To build an isolation 
forest one needs an isolation tree. The isolation tree for symbolic data will follow the same rules as 
a decision tree for symbolic data. 

The authors’ proposal extends the classical isolation forest for symbolic interval-valued data cases, 
using the following elements: 

• standard decision tree for symbolic-interval valued data, 
• random value of a random variable as a cutting point, 
• building the decision tree for symbolic data according to the rules for this data type, 
• other elements of the isolation forest will be the same as for classical data cases (number of trees 

100, sample size 256, depth of the tree 6, anomaly detection threshold 0.6). 

For symbolic data analysis and decision tree models, there are classification trees requiring a nominal 
dependent variable and a set of explanatory variables, which can be either classical variables of any 
type or symbolic interval-valued variables, or symbolic multinominal variables without weights (see 
Gatnar and Walesiak, 2011, pp. 282-285). In the empirical part, symbolic interval-valued data were 
used, hence the article presents how to build an isolation tree for this type of symbolic data. 

Table 3 shows all the steps needed to build a symbolic isolation tree for interval-valued symbolic 
variables. 



Isolation Forests for Symbolic Data as a Tool for Outlier Mining  5 
 

Table 3. Symbolic isolation tree for interval-valued data 

Step number Step name Key elements 

1 preparation of a dataset a) data collection and construction of symbolic data table 
b) calculating midpoints for symbolic interval-valued variables (future cutting 

values 𝑐𝑐) 
c) symbolic interval-valued variables can have different lengths (see Table 2) 

one can get a set of different cutting values 𝑐𝑐 

2 maximum depth of a tree select the maximum depth of the isolation tree (l) 

3 random choice a) random symbolic interval-valued variable is chosen 
b) a midpoint of this variable is being selected as cut criterion c in the 

following steps 

4 estimating probabilities 
for split 

a) for the left node: 

𝑝𝑝𝑘𝑘(𝑙𝑙) = 𝑐𝑐−𝑣𝑣𝑘𝑘𝑘𝑘
𝑣𝑣𝑘𝑘𝑘𝑘−𝑣𝑣𝑘𝑘𝑘𝑘

, 

where: 𝑘𝑘 = 1,⋯ ,𝑛𝑛 − number of a symbolic object; 𝑣𝑣𝑘𝑘𝑘𝑘 − upper bound of 
a symbolic interval-valued variable; 𝑣𝑣𝑘𝑘𝑘𝑘 − lower bound of a symbolic interval-
valued variable; 𝑐𝑐 − cutting value, 

b) if 𝑐𝑐 ≤ 𝑣𝑣𝑘𝑘𝑘𝑘  then 𝑝𝑝𝑘𝑘(𝑙𝑙) = 0; if 𝑐𝑐 > 𝑣𝑣𝑘𝑘𝑘𝑘 then 𝑝𝑝𝑘𝑘(𝑙𝑙) = 1, 
c) for the right node it is estimated as follows: 𝑝𝑝𝑘𝑘(𝑟𝑟) = 1 − 𝑝𝑝𝑘𝑘(𝑙𝑙) 

5 split decision an object is being assigned to right or left node according to the highest 
probability for a node 

6 repeat steps 3-5 a) repeat steps 3 to5 until final nodes are obtained – in the case of isolation 
forest, these steps until a node contains unique data point or maximum 
tree depth level l is reached  

b) cutting values used in previous steps (nodes) are not used again 

Source: own elaboration based on (Gatnar and Walesiak, 2011, pp. 282-285; Liu et al., 2008). 

The isolation forest was created by generating a set of t random isolation trees, expected path length 
ℎ(𝒙𝒙) to isolate object x is computed using the mean of the path lengths required to isolate the point 
using each generated tree. Finally, the anomaly score was calculated as follows (Liu et al., 2008): 

 𝑆𝑆(𝒙𝒙) = 2−
𝐸𝐸[ℎ(𝑥𝑥)]
𝑐𝑐(𝜓𝜓) ,  (1) 

where: 𝑐𝑐(𝑛𝑛) is the average value of ℎ(𝒙𝒙) for a dataset of size n, and this value can be computed as 
𝑐𝑐(𝑛𝑛) = 2𝐻𝐻(𝑛𝑛 − 1) − 2(𝑛𝑛−1)

𝑛𝑛
, in which 𝐻𝐻(𝑛𝑛) is the harmonic number (it can be estimated as 

𝐻𝐻(𝑛𝑛) = ln(𝑛𝑛) + 𝛾𝛾 with 𝛾𝛾 ≈ 0.557 is the Euler-Mascheroni constant. 

If 𝐸𝐸[ℎ(𝒙𝒙)] = 𝑐𝑐(𝑛𝑛) the anomaly score of x is 𝑠𝑠(𝒙𝒙,𝑛𝑛) = 0.5. When ℎ(𝒙𝒙) → +∞, for the points that are 
not outliers, the anomaly score tends to 0. When ℎ(𝒙𝒙) is very small compared to 𝑐𝑐(𝑛𝑛), which is the 
case for outliers, the anomaly score tends to 1. 

Thus, the anomaly threshold is 𝑠𝑠0 ∈ [0; 1] and can be defined in such a way that x is treated as an 
anomaly when 𝑠𝑠(𝒙𝒙) > 𝑠𝑠0 and is a non-outlier in other cases. Liu et al. (2008) proposed the following 
parameters for an isolation forest: 

• number of trees (𝑡𝑡) = 100, 
• sub-sample size (𝜓𝜓) = 256, 
• maximum depth of a tree (𝑙𝑙) = ceil(log 2𝜓𝜓) = 8, 
• anomaly detection threshold 𝑠𝑠0 = 0.6. 

An isolation forest for classical data is a good tool for outliers’ detection as it does not need any 
assumptions on the data distribution, number of anomalies in the dataset, and is computationally 
efficient. Nevertheless, the isolation forest algorithm can suffer from a bias due to the way the trees 
are created. To avoid problems of the isolation forest, Hariri et al. (2019) proposed the extended 
isolation forest (EIF). This approach allows the branching hyperplanes to take on any slope, as opposed 
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to hyperplanes which are only parallel to the coordinate frame. This extension in the algorithm 
completely resolves the bias introduced in the case of standard isolation forest. Lesouple et al. (2021) 
suggested another extension of the isolation forests, called the generalised isolation forest (GIF), 
namely to project all the data on the sampled normal unit vector, look for the minimum and maximum 
values of the projections, and to sample a split value uniformly between these two values. 

3. Experiments with Outliers 

To check how the proposed modification is dealing with outliers, artificial datasets with a known 
number of clusters and known number, or share, of outliers were generated with the cluster.Gen 
function from the clusterSim package (see Walesiak and Dudek 2023 for details). In the 
cluster.Gen function, to obtain symbolic interval data, the data were generated for each model 
twice into sets A and B and minimum (maximum) value of is treated as the beginning (the end) of an 
interval.  

The outliers were generated independently for each variable for the whole data set from uniform 
distribution (the default range was [1, 10]). The generated values were randomly added to the 
maximum of j-th variable or subtracted from the minimum of j-th variable. Table 4 presents the details 
for each artificial dataset. 

Table 4. Parameters for artificial datasets 

Model  Clusters  
and variables Means Covariance matrix Σ Size and outlier size 

or share 

1 three elongated 
clusters in three 
dimensions 

(1.5, 6, –3), (3, 12, –6), 
(4.5, 18, –9) 

𝜎𝜎𝑘𝑘𝑘𝑘 = 1(1 ≤ 𝑗𝑗 ≤ 3),𝜎𝜎12 =
𝜎𝜎13 = −0.9 and 𝜎𝜎23 = 0.9 

180 non-outliers 
10 outliers 

2 three elongated 
clusters in 
twodimensions 

(0, 0), (1.5, 7), (3, 14) 𝜎𝜎𝑘𝑘𝑘𝑘 = 1 
𝜎𝜎𝑘𝑘𝑗𝑗 = −0.9 

150 non-outliers 
10 outliers 

3 five clusters in two 
dimensions that are 
not well separated 

(5, 5), (–3, 3), (3, –3), (0, 0), 
(–5, – 5) 

𝜎𝜎𝑘𝑘𝑘𝑘 = 1 
𝜎𝜎𝑘𝑘𝑗𝑗 = 0.9 

788 objects with 
5% outliers 

4 four clusters in three 
dimensions 

(–4, 5, –4), (5, 14, 5), (14, 5, 
14), (5, –4, 5), 

𝜎𝜎𝑘𝑘𝑘𝑘 = 1 (1 ≤ 𝑗𝑗 ≤ 3) 
𝜎𝜎𝑘𝑘𝑗𝑗 = 0 (1 ≤ 𝑗𝑗 ≠ 𝑙𝑙 ≤ 3) 

280 non-outliers 
20 outliers 

5 four clusters in two 
dimensions 

smiley dataset from mlbench package of R software1 
(the smiley consists of 2 Gaussian eyes, a trapezoid nose  
and a parabola mouth with vertical Gaussian noise) 

500 non-outliers 
10 outliers 

Source: own elaboration. 

Figure 1 shows the interval-valued plots for all the datasets with outliers. In each model the outliers 
are presented as navy rectangles, whereas the clusters are denoted by green, yellow, red, and light 
blue. 

 
1 In order to generate symbolic interval-valued data, initial smiley data points were generated twice and a minimum and 

maximum values were selected as the lower and upper bounds of symbolic interval-valued variable. 
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Smiley dataset 

Fig. 1. All datasets with outliers 

Source: own elaboration with R software. 

4. Results 

For each model, 20 simulation runs were performed and the average value of the adjusted Rand index 
for outliers and the number of outliers were obtained. The same simulations were carried out for the 
DBSCAN algorithm, which is capable of outlier detection (see e.g.  Aggarwal, 2017; Hahsler et al., 2019; 
Schubert et al., 2017). Table 5 presents the simulation results.  
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Table 5. Simulation results 

Model Size and outlier size  
or share Methods Number  

of outliers 
Average adjusted 

rand index 
Calculation time 

for 20 loops 
1 180 non-outliers 

10 outliers 
isolation forest 10 1 0.245647 s 

DBSCAN 29.3 0.4188352 0.1307719 s 
2 150 non-outliers 

10 outliers 
isolation forest 10.05 0.9971117 0.2196631 s 

DBSCAN 19.4 0.6126875 0.1015229 s 
3 368 objects with 

5% outliers isolation forest 17.95 
(5.128%) 0.9983548 0.5078101 s 

DBSCAN 29.2 
(7.935%) 0.8340508 0.156868 s 

4 280 non-outliers 
20 outliers 

isolation forest 19.95 0.9984436 0.6292601 s 

DBSCAN 179 -0.02471935 0.16311 s 
5 500 non-outliers 

10 outliers 
isolation forest 10.06 0.9998371 0.5702689 s 

DBSCAN 3.5 0.5921260 0.6023978 s 

Source: own elaboration. 

Both the computational times and the number of outliers found appeared to be promising. The 
isolation forest for symbolic data was able to detect outliers in each case (in most cases the number of 
outliers was correct). In each case the isolation forest achieved better results than the well-known 
DBSCAN algorithm. 

What is more important, is that the adjusted Rand index was very high. It can be even exactly at 1 if 
the clusters in the data are well separated and there are not too many outliers.  Where the clusters 
are not too well separated, the isolation forest is also performing well as far as the adjusted Rand index 
is concerned. As with all the other data analysis methods, there are key elements that must be set in 
advance – in this case the number of trees (isolation trees), sample size, maximum depth of a tree and 
anomaly threshold. 

5. Discussion and Conclusions 

Isolation forests can be quite easily adapted for symbolic data cases, and they proved to be an effective 
tool for outlier mining when dealing with artificial sets with a known data structure. Further analysis 
should include also real data sets with outliers (i.e. credit fraud detection data) and comparisons with 
other methods that can be applied for symbolic data cases (i.e. decision trees, neural networks and 
k nearest-neighbour method for symbolic data). 

The computational times were promising for all the datasets, and all the cluster shapes’ computational 
times for 20 loops were very similar (usually it took around 6 seconds to compute the final results). 
The proposed algorithm has the same drawbacks as the isolation forests for classical data; if there are 
no outliers in the dataset, some objects could be labelled as outliers. The isolation forest achieved 
better results in terms of outlier detection, when no outliers were present while building the initial 
isolation forest and its trees. However, if outliers were present in the data when preparing the isolation 
forest, the final results were slightly worse. 

The only problem for the isolation forest was the selection of the critical value for the anomaly score. 
In this paper the authors used the same idea proposed for classical data, namely if the anomaly score 
was greater than 0.6, the object was an anomaly, and if not – the object was considered to be a non- 
-outlier. 



Isolation Forests for Symbolic Data as a Tool for Outlier Mining  9 
 

References 

Aggarwal, C. C., and Yu, P. S. (2005). An Effective and Efficient Algorithm for High-Dimensional Outlier Detection. The VLDB 
Journal, 14, 211-221. 

Aggarwal, C. (2017). Outlier Analysis. Springer. 
Aguinis, H., Gottfredson, R. K., and Joo, H. (2013). Best-practice Recommendations for Defining, Identifying, and Handling 

Outliers. Organizational Research Methods, 16(2), 270-301. 
Anscombe, F. J., and Guttman, I. (1960). Rejection of Outliers. Technometrics, 2(2), 123-147. 
Ayadi, A., Ghorbel, O., Obeid, A. M., and Abid, M. (2017). Outlier Detection Approaches for Wireless Sensor Networks:  

A Survey. Comput. Netw., (129), 319-333. 
Barnett, V., and Lewis, T. (1994). Outliers in Statistical Data (vol. 3, no. 1). Wiley. 
Bock, H.-H., and Diday, E. (eds.) (2000). Analysis of Symbolic Data. Explanatory Methods for Extracting Statistical Information 

from Complex Data. Springer Verlag. 
Billard, L., and Diday, E. (2006). Symbolic Data Analysis. Conceptual Statistics and Data Mining. John Wiley & Sons. 
Branch, J. W., Giannella, C., Szymanski, B., Wolff, R., and Kargupta, H. (2013). In-network Outlier Detection in Wireless Sensor 

Networks. Knowledge and Information Systems, 34, 23-54. 
Breunig, M. M., Kriegel, H. P., Ng, R. T., and Sander, J. (2000, May). LOF: Identifying Density-Based Local Outliers (Proceedings 

of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93-104). 
Brito, P., and Dias, S. (Eds.). (2022). Analysis of distributional data. CRC Press. 
Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly Detection: A Survey. ACM Comput. Surv., (41), 15:1-15:58 
Cheng, T., and Li, Z. (2006). A Multiscale Approach for Spatio-Temporal Outlier Detection. Transactions in GIS, 10(2), 253-263. 
Hawkins, D. M. (1980). Identification of Outliers (Vol. 11). Chapman and Hall. 
Hahsler, M., Piekenbrock, M., and Doran, D. (2019). dbscan: Fast Density-based Clustering with R. Journal of Statistical 

Software, (91), 1-30. 
Ghosh, D., and Vogt, A. (2012). Outliers: An Evaluation of Methodologies. Joint Statistical Meetings, 12(1), 3455-3460. 
Grubbs, F. E. (1969). Procedures for Detecting Outlying Observations in Samples. Technometrics, 11(1), 1-21. 
Gatnar E.,  and Walesiak M. (Ed.). (2011). Analiza danych jakościowych i symbolicznych z wykorzystaniem programu R.  

C.H. Beck. 
Hariri, S., Kind, M. C., and Brunner, R. J. (2019). Extended Isolation Forest. IEEE Transactions on Knowledge and Data 

Engineering, 33(4), 1479-1489. 
Hawkins, D. M. (1980). Identification of Outliers (Vol. 11). London: Chapman and Hall. 
Hawkins, S., He, H., Williams, G., & Baxter, R. (2002). Outlier Detection Using Replicator Neural Networks. In: Data 

Warehousing and Knowledge Discovery: 4th International Conference, DaWaK 2002 Aix-en-Provence, France, September 
4-6, 2002 Proceedings 4 (pp. 170-180). Springer Berlin Heidelberg. 

Hu, T., and Sung, S. Y. (2003). Detecting Pattern-based Outliers. Pattern Recognition Letters, 24(16), 3059-3068. 
Jiang, M. F., Tseng, S. S., and Su, C. M. (2001). Two-phase Clustering Process for Outliers Detection. Pattern Recognition Letters, 

22(6-7), 691-700. 
Keller, F., Muller, E., and Bohm, K. (2012, April). HiCS: High Contrast Subspaces for Density-Based Outlier Ranking (2012 IEEE 

28th International Conference on Data Engineering, pp. 1037-1048). IEEE. 
Lazarevic, A., and Kumar, V. (2005, August). Feature bagging for Outlier Detection (Proceedings of the Eleventh ACM SIGKDD 

International Conference on Knowledge Discovery in Data Mining, pp. 157-166). 
Lesouple, J., Baudoin, C., Spigai, M., and Tourneret, J. Y. (2021). Generalized Isolation Forest for Anomaly Detection. Pattern 

Recognition Letters, 149, 109-119. 
Liu, F. T.¸ Ting, K. M., and Zhou, Z.-H. (2008). Isolation Forest (2008 Eighth IEEE International Conference on Data Mining, Pisa, 

Italy, 2008, pp. 413-422). doi: 10.1109/ICDM.2008.17. 
Micenková, B., McWilliams, B., and Assent, I. (2015). Learning Representations for Outlier Detection on a Budget. arXiv 

preprint arXiv:1507.08104. 
Muthukrishnan, S., Shah, R., and Vitter, J. S. (2004, June). Mining Deviants in Time Series Data Streams (Proceedings. 16th 

International Conference on Scientific and Statistical Database Management, pp. 41-50). IEEE. 
Rayana, S., Zhong, W., and Akoglu, L. (2016, December). Sequential Ensemble Learning for Outlier Detection: A Bias-Variance 

Perspective (2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 1167-1172). IEEE. 
Singh, K., and Upadhyaya, S. (2012). Outlier Detection: Applications and Techniques. International Journal of Computer 

Science Issues (IJCSI), 9(1), 307. 
Sadik, S., and Gruenwald, L. (2011, September). Online Outlier Detection for Data Streams (Proceedings of the 15th 

Symposium on International Database Engineering & Applications, pp. 88-96). 



Marcin Pełka, Andrzej Dudek  10 
 

Schubert, E., Sander, J., Ester, M., Kriegel, H. P., and Xu, X. (2017). DBSCAN Revisited, Revisited: Why and How You Should 
(Still) Use DBSCAN. ACM Transactions on Database Systems, 42(3), 1-21. 

Smiti, A. (2020). A Critical Overview of Outlier Detection Methods. Computer Science Review, 38(100306). 
Thang, T. M., and Kim, J. (2011, April). The Anomaly Detection by Using Dbscan Clustering with Multiple Parameters 

(2011 International Conference on Information Science and Applications, pp. 1-5). IEEE. 
Zhao, Y., and Hryniewicki, M. K. (2018, July). Xgbod: Improving Supervised Outlier Detection with Unsupervised Representation 

Learning (2018 International Joint Conference on Neural Networks (IJCNN), pp. 1-8). IEEE. 
Walesiak, M., and Dudek, A. (2023). clusterSim: Searching for Optimal Clustering Procedure for a Data Set. Retrieved from 

www.r-project.org 
Wang, H., Bah, M. J., and Hammad, M. (2019). Progress in Outlier Detection Techniques: A Survey. Ieee Access, 7, 107964- 

-108000. 

Lasy separujące dla danych symbolicznych jako narzędzie wykrywania 
obserwacji odstających  

Streszczenie 

Cel: Identyfikacja obserwacji odstających stanowi kluczowy element w analizie danych. Pomimo że 
w literaturze funkcjonuje wiele różnych definicji, czym są obserwacje odstające, to ogólnie można 
stwierdzić, że są to obiekty różniące się od pozostałych obserwacji ze zbioru danych. Literatura 
przedmiotu wskazuje wiele różnorodnych metod, które można wykorzystać w przypadku danych 
klasycznych. Niestety w przypadku danych symbolicznych brakuje takich analiz. Celem artykułu jest 
zaproponowanie modyfikacji lasów separujących (isolation forests) dla danych symbolicznych. 

Metodyka: W artykule wykorzystano lasy separujące dla danych symbolicznych do identyfikacji 
obserwacji odstających w sztucznych zbiorach danych o znanej strukturze klas i znanej liczbie 
obserwacji odstających. 

Wyniki: Otrzymane wyniki wskazują, że lasy separujące dla danych symbolicznych są efektywnym 
i szybkim narzędziem w identyfikacji obserwacji odstających. 

Implikacje i rekomendacje: Ponieważ lasy separujące dla danych symbolicznych okazały się 
skutecznym narzędziem w identyfikacji obserwacji odstających, celem przyszłych badań powinno być 
przeanalizowanie skuteczności tej metody w przypadku rzeczywistych zbiorów danych (np. zbioru 
dotyczącego oszustw z użyciem kart kredytowych), a także porównanie tej metody z innymi metodami, 
które pozwalają odnaleźć obserwacje odstające (np. DBSCAN). Autorzy sugerują, by w przypadku lasów 
separujących dla danych symbolicznych stosować te same parametry, jakie zwykle stosuje się 
w przypadku lasów losowych dla danych klasycznych. 

Oryginalność/wartość: Artykuł nie tylko stanowi ujęcie teorii w zakresie obserwacji odstających, ale 
jednocześnie proponuje, jak zastosować lasy separujące w przypadku danych symbolicznych. 

Słowa kluczowe: analiza danych symbolicznych, lasy separujące, obserwacje odstające 

 


	1

