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Abstract: The primary goal of this research was to estimate the quantile of a conditional distribution 
using a semi-parametric approach in the presence of randomly missing data, where the predictor 
variable belongs to a semi-metric space. The authors assumed a single index structure to link the 
explanatory and response variable. First, a kernel estimator was proposed for the conditional 
distribution function, assuming that the data were selected from a stationary process with missing 
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data at random (MAR). By imposing certain general conditions, the study established the model’s 
uniform almost complete consistencies with convergence rates.  

Keywords: functional data analysis, functional single index process, kernel estimator, missing at 
random, nonparametric estimation, small ball probability 

1. Introduction  

The Single Index Model (SIM) is a financial modelling technique used to analyse the risk and return of 
a portfolio. It assumes that the returns of individual assets can be explained by their exposure to 
a common factor or market index. When dealing with missing data in the SIM framework, the 
missingness is assumed to be at random (MAR). This means that the missing values are related to the 
observed data but not to the missing values themselves. 

To deal with missing data in the SIM, there are several possible approaches one can consider: 

1. Complete-case analysis involves excluding any observations with missing data from the analysis. 
Although this is the simple approach, it can result in the loss of valuable information if there is 
a considerable amount of missing data. 

2. Imputation: such methods involve estimating missing values based on the observed data. There 
are various imputation techniques available, such as mean imputation, regression imputation, and 
multiple imputations. These methods aim to replace missing values with plausible estimates to 
preserve the integrity of the analysis. 

3. Maximum likelihood estimation involves estimating the model parameters using the likelihood 
function, which considers both the observed data and the mechanism of missing data. By 
maximising the likelihood one can obtain parameter estimates that are most consistent with the 
observed data, taking into account the assumed mechanism for the missing data. 

4. Multiple imputations is a sophisticated imputation technique that generates multiple plausible 
values for each missing data point. It involves creating multiple imputed datasets, estimating the 
model parameters for each dataset, and then combining the results using appropriate rules. 
Multiple imputations can provide more reliable estimates and standard errors compared to single 
imputation methods. 

It is crucial to note that the selection of approach depends on the specifics of the data, the extent of 
missingness, and the assumptions one is willing to make. It is always recommended to carefully 
consider the nature of the data and consult with domain experts when handling missing data in the 
SIM or any other modelling framework. 

Ongoing research focuses on the asymptotic properties of semi-parametric estimators of the 
conditional quantile for functional data within the Single Index Model (SIM) considering missing data 
at random (MAR), and specific results may depend on the particular assumptions and estimation 
methods employed. However, this study can provide a general overview of some relevant concepts 
and approaches in this context. In the SIM framework, functional data refers to observations that are 
functions rather than scalar values. The goal was to estimate the conditional quantile of a functional 
response variable based on a set of functional predictors and a single index variable. 

To establish the asymptotic properties of the semi-parametric estimators for the conditional quantile 
of functional data in the SIM considering missing data at random, various theoretical conditions need 
to be satisfied. These conditions often involve assumptions about the functional data, the missing data 
mechanism, and the model specification. Some common conditions include consistency and efficiency. 
Specific results in this area may depend on the assumptions and estimation techniques employed in 
each study. Therefore, it is important to refer to the literature and research articles that focus on the 
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specific estimation method and relevant assumptions to obtain more detailed and precise asymptotic 
properties of the estimators. 

Note: The field of functional data analysis is evolving, and new research may have emerged since the 
knowledge cutoff in September 2021. Consulting recent publications and academic resources on 
functional data analysis, missing data, and the single index model would provide the most up-to-date 
information in this area. 

In non-parametric statistics, one of the most common problems is the issue of forecasting. Regression 
is often employed as the primary tool in addressing this issue. However, regression is inadequate in 
cases where the conditional density is asymmetrical or multimodal. Hence, the conditional quantile 
provides a better prediction of the impact of the variable of interest 𝑌𝑌 on the explanatory variable 
𝑋𝑋 .When the explanatory variable is either infinite-dimensional or of a functional nature, there is 
a limited amount of literature available that investigates the statistical properties of functional 
nonparametric regression models for missing data. In 2013, Ferraty, Sued, and Vieu introduced a novel 
method for estimating the average value of a single variable response using an independent and 
identically distributed (i.i.d.) functional sample. This method considers cases where the independent 
variables are observed for each individual, whereas certain responses are missing randomly (MAR). 
This work extended the results given in Cheng (1994) to the situation where the independent variables 
possess a functional nature. 

As far as it is known, the statistical literature has not yet explored the estimation of the nonparametric 
conditional distribution in the context of a functional single index structure, which incorporates 
missing data and stationary processes with functional nature. This study focused on investigating the 
estimation of conditional quantiles under the assumption of missing at random (MAR) data. The 
objective was to develop a functional approach that can effectively handle MAR samples in non-
parametric problems, specifically in the context of conditional quantile estimation. Thus, the authors 
established the asymptotic of the estimator under certain mild conditions, and in this context focused 
on a model where the response variable is missing. In addition to the infinite-dimensional nature of 
the data, the study intentionally avoided using the strong mixing condition and its variants to measure 
dependency, as they involve complex probabilistic calculations. Therefore, within this framework the 
independence of the variables was assumed. To the best of the authors’ knowledge the statistical 
literature does not currently provide any studies on the estimation of conditional quantiles that 
incorporate censored data, independent theory, and functional data with a single index structure. This 
work extends to the functional single index model case, the work of Ling, Liang and Vieu (2015), Ling, 
Liu and Vieu (2016) and Rabhi, Kadiri and Mekki (2021).  

The estimation of conditional quantiles, specifically the conditional median function, has attracted 
considerable interest in the statistical community due to its theoretical and practical implications. 
It serves as a compelling alternative predictor to the conditional mean due to its robustness in handling 
outliers (see Chaudhuri et al., 1997). 

Many researchers have shown great interest in the estimation of the conditional mode of a scalar 
response with a functional covariate. The nonparametric estimator for the conditional quantile, which 
is defined as the inverse of the conditional distribution function in the case of dependent data, was 
introduced by Ferraty, Rabhi, and Vieu (2005). Under an α-mixing assumption, Ezzahrioui and Ould- 
-Saïd (2008) established the asymptotic normality of the kernel conditional quantile estimator.  
Ould-Saïd and Cai (2005) demonstrated the uniform strong consistency, along with rates, of the kernel 
estimator for the conditional mode function in the censored case. In the context of estimating 
conditional quantiles, this study referred to the work of Lemdani, Ould-Saïd, and Poulin (2009). Several 
other authors have shown interest in estimating conditional models under the presence of censored 
or truncated observations, see for instance, Liang and de Uña-Alvarez (2010), Rabhi, Kadiri and Mekki 
(2021), Rabhi, Kadiri and Akkal (2021), Hamri, Mekki, Rabhi and Kadiri (2022), Ould-Saïd and Djabrane 
(2011), Ould-Saïd and Tatachak (2011), etc. 
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The studies by Aït-Saidi, Ferraty, Kassa and Vieu (2008) focused on using SFIM (Single Functional Index 
Models) to estimate the regression operator. They proposed a cross-validation procedure to estimate 
both the unknown link function and the unknown functional index. Attaoui and Boudiaf (2014) and 
Attaoui and Ling (2016) were interested in the estimation of the conditional density and the conditional 
cumulative distribution function, respectively, using SFIM. Their studies assumed a strong mixing 
condition for the data. Kadiri, Rabhi and Bouchetouf (2018) examined the asymptotic properties of 
a kernel-type estimator for conditional quantiles in the context of right-censored response data 
sampled from a strong mixing process. 

The remaining sections of the paper are structured as follows: Section 2 introduces the non-parametric 
estimator of the functional conditional model in cases when data are Missing at Random (MAR). 
Section 3 outlines useful assumptions for the theoretical analysis. Section 4 establishes the pointwise 
almost complete convergence and the uniform almost-complete convergence of the kernel estimator 
for our models, along with the corresponding convergence rates. 

2. Model and estimator 

2.1. The functional nonparametric framework 

Letus consider a random pair (𝑋𝑋,𝑌𝑌)  where 𝑌𝑌  takes values in ℝ  and 𝑋𝑋 takes values in an infinite- 
-dimensional Hilbertian space ℋ with scalar product 〈. , . 〉. It was assumed that the statistical sample 
of pair (𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖)𝑖𝑖=1,…,𝑛𝑛 is the same distribution as (𝑋𝑋,𝑌𝑌),  but they are independent and identically 
distributed. 

From this point, X is referred to as a functional random variable (f.r.v.). Let 𝑥𝑥 be a fixed element in the 
Hilbertian space ℋ. The conditional cumulative distribution function (cond-cdf) of 𝑌𝑌 given 〈𝜃𝜃,𝑋𝑋〉 =
〈𝜃𝜃, 𝑥𝑥〉 is denoted by 𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥), i.e.: 

∀𝑦𝑦 ∈ ℝ,𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥) =  ℙ(𝑌𝑌 ≤  𝑦𝑦| 〈𝜃𝜃,𝑋𝑋〉 = 〈𝜃𝜃, 𝑥𝑥〉). 
By stating this, the authors implied the presence of a regular form of the conditional distribution of 
𝑌𝑌 given 〈𝜃𝜃,𝑋𝑋〉 = 〈𝜃𝜃, 𝑥𝑥〉. 

In the context of the infinite-dimensional objective, the study employed the term "functional 
nonparametric," where "functional" signifies the infinite dimensionality of the data, and 
"nonparametric" refers to the infinite dimensionality of the model. This type of statistical approach, 
known as doubly infinite dimensional, is also referred to as functional nonparametric statistics. For 
more details, refer to Ferraty and Vieu (2003). Furthermore, the term "operational statistics" was 
employed as the target object to be estimated (the cond-cdf 𝐹𝐹(𝜃𝜃, . , 𝑥𝑥), can be perceived as a nonlinear 
operator. 

2.2. The estimators 

In the case of complete data, the kernel estimator 𝐹𝐹�𝑛𝑛(𝜃𝜃, . , 𝑥𝑥) to estimate 𝐹𝐹(𝜃𝜃, . , 𝑥𝑥) is presented as 
follows: 

𝐹𝐹�(𝜃𝜃, 𝑦𝑦, 𝑥𝑥) =
∑ 𝐾𝐾�ℎ𝑛𝑛−1(|〈𝜃𝜃, 𝑥𝑥 − 𝑋𝑋𝑖𝑖〉|)�𝐻𝐻�𝑔𝑔𝑛𝑛−1(𝑦𝑦 − 𝑌𝑌𝑖𝑖)�𝑛𝑛
𝑖𝑖=1

∑ 𝐾𝐾�ℎ𝑛𝑛−1(〈𝜃𝜃, 𝑥𝑥 − 𝑋𝑋𝑖𝑖〉)�𝑛𝑛
𝑖𝑖=1

, (2.1) 

Here 𝐾𝐾 represents a kernel function, 𝐻𝐻 denotes a cumulative distribution function and ℎ𝑛𝑛(resp. 𝑔𝑔𝑛𝑛) 
refers to a sequence of positive real numbers. It is worth noting that Roussas (1969) introduced related 
estimates based on similar concepts but specifically when X is real. Moreover, Samanta (1989) 
produced an earlier asymptotic study on the subject. 
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The uniqueness of such an estimator is assured when 𝐻𝐻is an increasing continuous function. This 
approach has been extensively employed in situations where the variable 𝑋𝑋 has a finite dimension. 
(see e.g. Cai, 2002; Gannoun et al., 2003; Whang and Zhao, 1999; Zhou and Liang, 2003). 

The 𝛾𝛾-order quantile is defined in a general way as follows: 

𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) = inf{𝑦𝑦 ∈ ℝ,𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥) ≥ 𝛾𝛾}. 

To streamline the framework and concentrate on the central theme of this study, which is the 
functional characteristic of 〈𝜃𝜃,𝑋𝑋〉, the authors made the assumption that 𝐹𝐹(𝜃𝜃, . , 𝑥𝑥) is both strictly 
increasing and continuous in the neighbourhood of 𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥). This ensures that the conditional quantile 
𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) is uniquely determined by the following expression: 

𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) = 𝐹𝐹−1(𝜃𝜃, 𝛾𝛾, 𝑥𝑥),∀𝛾𝛾 ∈ (0,1). (2.2) 

Estimator �̃�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) of 𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) can be readily derived as a by-product of equations (2.1) and (2.2): 

�̃�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) = 𝐹𝐹�−1(𝜃𝜃, 𝛾𝛾, 𝑥𝑥). 

In the case of incomplete data with missing at random for the response variable, the observations 
consist of (𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖, 𝛿𝛿𝑖𝑖)1≤𝑖𝑖≤𝑛𝑛, where 𝑋𝑋𝑖𝑖  is completely observed, while 𝛿𝛿𝑖𝑖 = 1 if 𝑌𝑌𝑖𝑖  is observed and 𝛿𝛿𝑖𝑖 = 0 
otherwise. The Bernoulli random variable 𝛿𝛿 was introduced, which is defined as follows: 

ℙ(𝛿𝛿 = 1|〈𝜃𝜃,𝑋𝑋〉 = 〈𝜃𝜃, 𝑥𝑥〉,𝑌𝑌 = 𝑦𝑦) = ℙ(𝛿𝛿 = 1|〈𝜃𝜃,𝑋𝑋〉 = 〈𝜃𝜃, 𝑥𝑥〉) = 𝑝𝑝(𝜃𝜃, 𝑥𝑥), 

where 𝑝𝑝(𝑥𝑥, 𝜃𝜃)represents a functional operator that is conditionally uniquely on 𝑋𝑋. Thus, the estimator 
of 𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥) in thesingle index model with response MAR isexpressed as follows:  

𝐹𝐹�(𝜃𝜃, 𝑦𝑦, 𝑥𝑥) =
∑ 𝛿𝛿𝑖𝑖𝐾𝐾�ℎ𝑛𝑛−1(|〈𝜃𝜃, 𝑥𝑥 − 𝑋𝑋𝑖𝑖〉|)�𝐻𝐻�𝑔𝑔𝑛𝑛−1(𝑦𝑦 − 𝑌𝑌𝑖𝑖)�𝑛𝑛
𝑖𝑖=1

∑ 𝛿𝛿𝑖𝑖𝐾𝐾�ℎ𝑛𝑛−1(〈𝜃𝜃, 𝑥𝑥 − 𝑋𝑋𝑖𝑖〉)�𝑛𝑛
𝑖𝑖=1

=
𝐹𝐹�𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥)
𝐹𝐹�𝐷𝐷(𝜃𝜃, 𝑥𝑥)

, 

where: 𝐾𝐾𝑖𝑖(𝜃𝜃, 𝑥𝑥): = K(ℎ𝑛𝑛−1|〈𝜃𝜃, 𝑥𝑥 − 𝑋𝑋𝑖𝑖〉|), 𝐻𝐻𝑖𝑖(𝑦𝑦) = 𝐻𝐻�𝑔𝑔𝑛𝑛−1(𝑦𝑦 − 𝑌𝑌𝑖𝑖)�,  

𝐹𝐹�𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥) =
∑ 𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖(𝜃𝜃, 𝑥𝑥)𝐻𝐻𝑖𝑖(𝑦𝑦)𝑛𝑛
𝑖𝑖=1

𝑛𝑛𝔼𝔼�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�
 and 𝐹𝐹�𝐷𝐷(𝜃𝜃, 𝑥𝑥) =

∑ 𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖(𝜃𝜃, 𝑥𝑥)𝑛𝑛
𝑖𝑖=1

𝑛𝑛𝔼𝔼�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�
.  

Then a natural estimator of 𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) is given by 

�̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) = 𝐹𝐹�−1(𝜃𝜃, 𝛾𝛾, 𝑥𝑥) = inf�𝑡𝑡 ∈ ℝ,𝐹𝐹�(𝜃𝜃,𝑦𝑦, 𝑥𝑥) ≥ 𝛾𝛾�, 

which satisfies 

𝐹𝐹��𝜃𝜃, �̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), 𝑥𝑥� = 𝛾𝛾. (2.3) 

2.3. Assumptions on the functional variable 

Let  𝑁𝑁𝑥𝑥 represent the fixed neighborhood of 𝑥𝑥 in  ℋ,  and then introduce the concept of 
ball  𝐵𝐵𝜃𝜃(𝑥𝑥,ℎ) centred at𝑥𝑥with a radius of ℎ.  

Mathematically,  𝐵𝐵𝜃𝜃(𝑥𝑥,𝑢𝑢) = {𝜒𝜒 ∈ ℋ: 0 < |〈𝜃𝜃, 𝑥𝑥 − 𝜒𝜒〉| < ℎ}. In this context, the authors introduced 
a random variable, denoted as 𝑑𝑑𝜃𝜃(𝑥𝑥,𝑋𝑋𝑖𝑖) = |〈𝜃𝜃, 𝑥𝑥 − 𝑋𝑋𝑖𝑖〉|which has acumulative distribution function 
given by:  

𝜙𝜙𝜃𝜃,𝑥𝑥(𝑢𝑢) = ℙ(𝑑𝑑𝜃𝜃(𝑥𝑥,𝑋𝑋𝑖𝑖) ≤ 𝑢𝑢) = ℙ�𝑋𝑋𝑖𝑖 ∈ 𝐵𝐵𝜃𝜃(𝑥𝑥,𝑢𝑢)�, 

where 𝑆𝑆ℝ is a fixed compact subset of ℝ+. 
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To derive the main result of this paper, it was necessary to consider the following foundational 
assumptions: 

(H1) ℙ�𝑋𝑋 ∈  𝐵𝐵𝜃𝜃(𝑥𝑥,ℎ𝑛𝑛)� =:𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛) > 0;𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛) ⟶  0 as ℎ𝑛𝑛 →  0. 

2.4. The nonparametric model 

In nonparametric estimation, it was assumed that cond-cdf 𝐹𝐹(𝜃𝜃, . , 𝑥𝑥) satisfies specific smoothness 
constraints, which also satisfy the following conditions, where 𝛼𝛼1 and 𝛼𝛼2 are positive numbers.  

(H2) ∀(𝑥𝑥1,𝑥𝑥2) ∈ 𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑥𝑥 ,∀(𝑦𝑦1,𝑦𝑦2) ∈ 𝑆𝑆ℝ × 𝑆𝑆ℝ, 
(i) |𝐹𝐹(𝜃𝜃,𝑦𝑦1, 𝑥𝑥1) − 𝐹𝐹(𝜃𝜃,𝑦𝑦2, 𝑥𝑥2)| ≤ 𝐶𝐶𝜃𝜃,𝑥𝑥(‖𝑥𝑥1 − 𝑥𝑥2‖𝛼𝛼1 + |𝑦𝑦1 − 𝑦𝑦2|𝛼𝛼2), 
(ii) ∫𝑦𝑦𝑑𝑑𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥) < ∞for all 𝜃𝜃, 𝑥𝑥 ∈ ℋ. 
(H3) 𝐹𝐹(𝜃𝜃, . , 𝑥𝑥)is l-times continuously differentiable in the neighbourhood of 𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥). 
(H4) ∀(𝑥𝑥1,𝑥𝑥2) ∈ 𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑥𝑥 ,∀(𝑦𝑦1,𝑦𝑦2) ∈ 𝑆𝑆ℝ × 𝑆𝑆ℝ, 

�𝐹𝐹(𝑙𝑙)(𝜃𝜃,𝑦𝑦1, 𝑥𝑥1) − 𝐹𝐹(𝑙𝑙)(𝜃𝜃,𝑦𝑦2, 𝑥𝑥2)� ≤ 𝐶𝐶𝜃𝜃,𝑥𝑥(‖𝑥𝑥1 − 𝑥𝑥2‖𝛼𝛼1 + |𝑦𝑦1 − 𝑦𝑦2|𝛼𝛼2), 

here for any positive integer l,  𝐹𝐹(𝑙𝑙)(𝜃𝜃,𝑦𝑦1, 𝑥𝑥1)  represents its l-th derivative (i.e.𝜕𝜕
𝑙𝑙𝐹𝐹(𝜃𝜃,𝑦𝑦,𝑥𝑥)
𝜕𝜕𝑦𝑦𝑙𝑙

�
𝑦𝑦=𝑧𝑧

). 

3. Asymptotic study  

The aim of this section was to apply these concepts to the context of a functional explanatory variable, 
and to develop a kernel-type estimator for the conditional distribution function 𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥) adapted to 
MAR response samples. The authors’ goal is to demonstrate the almost complete convergence1 of the 
kernel estimator 𝐹𝐹�(𝜃𝜃,𝑦𝑦, 𝑥𝑥) where the response variable is missing. The provided results are 
accompanied by the data on the convergence rate. In the following discussions, 𝐶𝐶 and 𝐶𝐶 ʹ will represent 
generic strictly positive real constants, while ℎ𝑛𝑛 (resp. 𝑔𝑔𝑛𝑛) denotes a sequence that converge to 0 as 𝑛𝑛 
increases. 

3.1. Pointwise almost complete convergence 

Following the assumptions presented in Section 2.4 necessitated supplementary conditions. These 
assumptions, which were later necessary for the parameters of the estimator, i.e. concerning 
𝐾𝐾, 𝐻𝐻,  ℎ𝑛𝑛 and  𝑔𝑔𝑛𝑛 are not excessively restrictive. Indeed, on one hand, these assumptions are 
fundamental to the estimation problem of  𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥), and on the other hand, these assumptions 
correspond to the assumptions typically employed in the context of non-functional variables. 
Specifically, the following conditions were introduced to ensure the performance of the 
estimator  𝐹𝐹� (𝜃𝜃, . , 𝑥𝑥): 

(H5) 
(i) ∀(𝑦𝑦1,𝑦𝑦2) ∈ ℝ2, |𝐻𝐻(𝑦𝑦1) −𝐻𝐻(𝑦𝑦2)| ≤ 𝐶𝐶|𝑦𝑦1 − 𝑦𝑦2|,∫|𝑦𝑦|𝛼𝛼2𝐻𝐻(1)(𝑦𝑦)𝑑𝑑𝑦𝑦 < ∞, 

∀𝑙𝑙 ∈ ℕ⋆,  𝐻𝐻(𝑙𝑙)(𝑦𝑦) = 𝜕𝜕𝑙𝑙𝐻𝐻(𝑧𝑧)
𝜕𝜕𝑧𝑧𝑙𝑙

�
𝑧𝑧=𝑦𝑦

 and lim
𝑛𝑛→∞

𝑛𝑛𝜍𝜍𝑔𝑔𝑛𝑛 = ∞, for some 𝜍𝜍 > 0. 

(ii) The support of 𝐻𝐻(1) is compact and ∀𝑙𝑙 ≥ 𝑗𝑗, 𝐻𝐻(𝑙𝑙)exists and is bounded. 
(H6) Function 𝐻𝐻, when restricted to the set {𝑢𝑢 ∈ ℝ,𝐻𝐻(𝑢𝑢) ∈ (0,1)} is strictly increasing. 
(H7) 𝐾𝐾 is a bounded positive function on the interval [0,1]: ∀𝑢𝑢 ∈ [0,1], 0 <K(𝑢𝑢). 
(H8) 𝑝𝑝(𝜃𝜃, 𝑥𝑥) is continuous in the neighbourhood of 𝑥𝑥, such that 0 < 𝑝𝑝(𝜃𝜃, 𝑥𝑥) < 1. 

 
1 Remember that sequence (𝑆𝑆𝑛𝑛)𝑛𝑛∈ℕ  of random variables is considered to converge almost completely to 

variable S, if, for any 𝜖𝜖 > 0 w one has ∑ ℙ(|𝑆𝑆𝑛𝑛 − 𝑆𝑆| > 𝜖𝜖) < ∞𝑛𝑛 . This form of convergence induces both the 
almost certain convergence and convergence in probability (see e.g. Bosq and Lecoutre, 1987). 
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• Comments on the hypotheses: 
1. Assumption (H1) plays an important role in the methodology. It is known as the 'concentration 

property' of the infinite dimensional spaces. 
2. (H2) and (H4) are used to control the regularity of the functional space of our model. 
3. (H6) ensures the existence of 𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), furthermore its uniqueness is ensured by (H5). 
4. Assumptions (H5) and (H7) are classical in functional estimation for finite or non-finite 

dimension spaces and are technical, and permit to give an explicit asymptotic variance. 
5. Assumptions (H1)-(H4) and (H7) are commonly used in the estimation of conditional 

distribution estimation in a single functional index model, which have been employed in the 
i.i.d. case by Kadiri, Rabhi and Bouchentouf (2018). 

6. (H8) is a supposition for missing at random, hence it is a technical condition for the concision 
of the proof of the main results. 
 

Theorem 3.1. Assuming that hypotheses (H1)-(H2), (H5)-(i), and (H6) hold, in the case where 
∃𝛽𝛽 > 0,𝑛𝑛𝛽𝛽𝑔𝑔𝑛𝑛 𝑛𝑛→∞

�⎯⎯�∞, and if  

𝑙𝑙𝑙𝑙𝑔𝑔 𝑛𝑛
𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛) 𝑛𝑛→∞

�⎯⎯� 0, 

then  

𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝐹𝐹�(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥)� = 𝒪𝒪�ℎ𝑛𝑛
𝛼𝛼1 + 𝑔𝑔𝑛𝑛

𝛼𝛼2� + 𝒪𝒪𝑎𝑎.𝑐𝑐𝑐𝑐. ��
𝑙𝑙𝑙𝑙𝑔𝑔 𝑛𝑛

𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
�. 

Proof. The proof is constructed based on the following decomposition, which holds true for any 𝑦𝑦 ∈ 𝑆𝑆ℝ: 

𝑠𝑠𝑢𝑢𝑝𝑝
𝑡𝑡∈𝑆𝑆ℝ

�𝐹𝐹�(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�  ≤
1

𝐹𝐹�𝐷𝐷(𝜃𝜃, 𝑥𝑥)
𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝐹𝐹�𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝔼𝔼𝐹𝐹�𝑁𝑁(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)� 

 +
1 

𝐹𝐹�𝐷𝐷(𝜃𝜃, 𝑥𝑥)
𝑠𝑠𝑢𝑢𝑝𝑝
𝑡𝑡∈𝑆𝑆ℝ

�𝔼𝔼𝐹𝐹�𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥)� 

+
𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥)
𝐹𝐹�D(𝜃𝜃, 𝑥𝑥)

𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝐹𝐹�D(𝜃𝜃, 𝑥𝑥) − 𝔼𝔼𝐹𝐹�D(𝜃𝜃, 𝑥𝑥)�. 

 

(3.1) 

Finally, the proof of this theorem directly follows from the intermediate results presented below. 

Lemma 3.1. Suppose that hypotheses (H1)-(H2), (H5)-(i) and (H8) are satisfied, then 

𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝔼𝔼𝐹𝐹�𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥)� = 𝒪𝒪�ℎ𝑛𝑛
𝛼𝛼1 + 𝑔𝑔𝑛𝑛

𝛼𝛼2�. 

Proof. When 

𝐼𝐼 = 𝔼𝔼𝐹𝐹�𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝐹𝐹(𝜃𝜃, 𝑦𝑦, 𝑥𝑥) = 𝔼𝔼�
1

𝑛𝑛𝔼𝔼�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�
�𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖(𝜃𝜃, 𝑥𝑥)𝐻𝐻𝑖𝑖(𝑦𝑦)
𝑛𝑛

𝑖𝑖=1

� − 𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥)

 =
1

𝑛𝑛𝔼𝔼�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�
�𝔼𝔼([𝔼𝔼(𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖(𝜃𝜃, 𝑥𝑥)𝐻𝐻𝑖𝑖(𝑦𝑦)|<  𝜃𝜃,𝑋𝑋𝑖𝑖 >)])
𝑛𝑛

𝑖𝑖=1

− 𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥),

 =
1

𝔼𝔼�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�
𝔼𝔼�𝑝𝑝(𝜃𝜃, 𝑥𝑥)𝐾𝐾1(𝜃𝜃, 𝑥𝑥)𝔼𝔼(𝐻𝐻1(𝑦𝑦))� − 𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥);
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integrating by parts and using the fact that 𝐻𝐻 is a cdf along with employing a double conditioning with 
respect to 𝑌𝑌1, one readily obtain: 

 𝔼𝔼�𝐻𝐻�𝑔𝑔𝑛𝑛−1(𝑦𝑦 − 𝑌𝑌1)�|<  𝜃𝜃,𝑋𝑋1 >� = � 𝐻𝐻 �
𝑦𝑦 − 𝑢𝑢
𝑔𝑔𝑛𝑛

�d𝐹𝐹(𝜃𝜃,𝑢𝑢,𝑋𝑋1)
ℝ

 = � 𝐻𝐻(1) �
𝑦𝑦 − 𝑢𝑢
𝑔𝑔𝑛𝑛

�𝐹𝐹(𝜃𝜃, 𝑢𝑢,𝑋𝑋1)𝑑𝑑𝑢𝑢
ℝ

 = �𝐻𝐻(1)(𝑣𝑣)𝐹𝐹(𝜃𝜃, 𝑦𝑦 − 𝑣𝑣𝑔𝑔𝑛𝑛,𝑋𝑋1)𝑑𝑑𝑣𝑣,
ℝ

 

and write, under (H3), (H5)-(i) and (H8), to obtain: 

 𝐼𝐼 =
1
𝔼𝔼𝐾𝐾1

𝔼𝔼�𝑝𝑝(𝜃𝜃, 𝑥𝑥)𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�𝐻𝐻(1)(𝑣𝑣)�𝐹𝐹(𝜃𝜃,𝑦𝑦 − 𝑣𝑣𝑔𝑔𝑛𝑛,𝑋𝑋1) − 𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�𝑑𝑑𝑣𝑣
ℝ

� 

 ≤ 𝐶𝐶𝜃𝜃,𝑥𝑥(𝑝𝑝(𝜃𝜃, 𝑥𝑥) + 𝑙𝑙(1))�𝐻𝐻(1)(𝑣𝑣)�ℎ𝑛𝑛
𝛼𝛼1 + |𝑣𝑣|𝛼𝛼2𝑔𝑔𝑛𝑛

𝛼𝛼2�𝑑𝑑𝑣𝑣
ℝ

≤ 𝒪𝒪�ℎ𝑛𝑛
𝛼𝛼1 + 𝑔𝑔𝑛𝑛

𝛼𝛼2�. 

Finally, the proof is complete. 

Lemma 3.2. Under hypotheses of Theorem 3.1, with 𝑛𝑛 → ∞ 

𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝐹𝐹�𝑁𝑁(𝜃𝜃, 𝑦𝑦, 𝑥𝑥) − 𝔼𝔼𝐹𝐹�𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥)� = 𝒪𝒪𝑎𝑎.𝑐𝑐𝑐𝑐. ��
𝑙𝑙𝑙𝑙𝑔𝑔 𝑛𝑛

𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
�. 

Proof. Using the compactness of 𝑆𝑆ℝ, one can write 𝑆𝑆ℝ ⊂ ⋃ �𝑧𝑧𝑗𝑗 − 𝑙𝑙𝑛𝑛, 𝑧𝑧𝑗𝑗 + 𝑙𝑙𝑛𝑛�
𝜏𝜏𝑛𝑛
𝑗𝑗=1  with 𝑙𝑙𝑛𝑛 and 𝜏𝜏𝑛𝑛 can be 

chosen such that  𝑙𝑙𝑛𝑛 = 𝐶𝐶𝜏𝜏𝑛𝑛−1~𝐶𝐶𝑛𝑛−𝜍𝜍−1 2⁄ . Taking 𝑚𝑚𝑦𝑦 = arg min
𝑗𝑗∈�𝑧𝑧1,⋯,𝑧𝑧𝜏𝜏𝑛𝑛�

�𝑦𝑦 − 𝑚𝑚𝑗𝑗�. Thus, one obtains the 

following decomposition: 

𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝐹𝐹�𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝔼𝔼𝐹𝐹�𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥)� ≤ 𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝐹𝐹�𝑁𝑁(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) − 𝐹𝐹�𝑁𝑁�𝜃𝜃,𝑚𝑚𝑦𝑦,𝑥𝑥��

 + 𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝐹𝐹�𝑁𝑁�𝜃𝜃,𝑚𝑚𝑦𝑦, 𝑥𝑥� − 𝔼𝔼𝐹𝐹�𝑁𝑁�𝜃𝜃,𝑚𝑚𝑦𝑦, 𝑥𝑥��

 + 𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝔼𝔼𝐹𝐹�𝑁𝑁�𝜃𝜃,𝑚𝑚𝑦𝑦, 𝑥𝑥� − 𝔼𝔼𝐹𝐹�𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�

 

 ≤ 𝐵𝐵1 + 𝐵𝐵2 + 𝐵𝐵3. 

As the first and the third terms can be used similarly, let us focus on the first term. By (H5)-(i) which 
implies in particular that 𝐻𝐻 is Hölder continuous with order one, this can be expressed as follows: 

𝐵𝐵1 ≤
1

𝑛𝑛𝔼𝔼�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�
𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝛿𝛿𝑖𝑖�𝐻𝐻𝑖𝑖(𝑦𝑦) −𝐻𝐻𝑖𝑖(𝑚𝑚𝑦𝑦)�
𝑛𝑛

𝑖𝑖=1

𝐾𝐾𝑖𝑖(𝜃𝜃, 𝑥𝑥)

 ≤
𝐶𝐶

𝑛𝑛𝔼𝔼�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�
𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝑦𝑦 − 𝑚𝑚𝑦𝑦�
𝑔𝑔𝑛𝑛

× �𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖(𝜃𝜃, 𝑥𝑥)
𝑛𝑛

𝑖𝑖=1

 ≤
𝐶𝐶𝑙𝑙𝑛𝑛

𝑛𝑛𝑔𝑔𝑛𝑛𝔼𝔼�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�
× �𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖(𝜃𝜃, 𝑥𝑥)

𝑛𝑛

𝑖𝑖=1

.

 

Using 𝔼𝔼𝐹𝐹�D(𝜃𝜃, 𝑥𝑥) = 𝑝𝑝(𝜃𝜃, 𝑥𝑥), (H5)-(i) and lim
𝑛𝑛→∞

𝑛𝑛𝛽𝛽𝑔𝑔𝑛𝑛 =∞ it follows that,  

𝐵𝐵1 𝑛𝑛→∞�⎯⎯� ∞ . 
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Therefore, for n large enough 

𝐵𝐵1 = 𝒪𝒪𝑎𝑎.𝑐𝑐𝑐𝑐. ��
𝑙𝑙𝑙𝑙𝑔𝑔 𝑛𝑛

𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
�. 

Following similar arguments, one can write 

𝐵𝐵3 ≤ 𝐵𝐵1. 

Concerning 𝐵𝐵2, let us consider 𝜀𝜀 = 𝜀𝜀0�
𝑙𝑙𝑐𝑐𝑙𝑙𝑛𝑛

𝑛𝑛𝑙𝑙𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
.   

Since ∀ 𝜀𝜀0 > 0  then 

ℙ�𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝐹𝐹�𝑁𝑁�𝜃𝜃,𝑚𝑚𝑦𝑦, 𝑥𝑥� − 𝔼𝔼𝐹𝐹�𝑁𝑁�𝜃𝜃,𝑚𝑚𝑦𝑦, 𝑥𝑥�� > 𝜀𝜀� ≤ ℙ� max
𝑗𝑗∈{1,⋯,𝜏𝜏𝑛𝑛}

�𝐹𝐹�𝑁𝑁�𝜃𝜃,𝑚𝑚𝑦𝑦,𝑥𝑥� − 𝔼𝔼𝐹𝐹�𝑁𝑁�𝜃𝜃,𝑚𝑚𝑦𝑦, 𝑥𝑥�� > 𝜀𝜀�

 ≤ 𝜏𝜏𝑛𝑛 ℙ��𝐹𝐹�𝑁𝑁�𝜃𝜃,𝑚𝑚𝑦𝑦, 𝑥𝑥� − 𝔼𝔼𝐹𝐹�𝑁𝑁�𝜃𝜃,𝑚𝑚𝑦𝑦, 𝑥𝑥�� > 𝜀𝜀�.
 

Applying Bernstein’s exponential inequality to: 

Π𝑖𝑖 =
1

𝔼𝔼�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�
�𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖(𝜃𝜃,𝑥𝑥)𝐻𝐻𝑖𝑖(𝑚𝑚𝑦𝑦) − 𝔼𝔼�𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖(𝜃𝜃,𝑥𝑥)𝐻𝐻𝑖𝑖(𝑚𝑚𝑦𝑦)��. 

Firstly, it follows from the fact that the Kernel Γ is bonded and 𝐻𝐻 ≤ 1, therefore 

ℙ��𝐹𝐹�𝑁𝑁�𝜃𝜃,𝑚𝑚𝑦𝑦, 𝑥𝑥� − 𝔼𝔼𝐹𝐹�𝑁𝑁�𝜃𝜃,𝑚𝑚𝑦𝑦, 𝑥𝑥�� > 𝜀𝜀� ≤ ℙ�
1
𝑛𝑛 �
�Π𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� > 𝜀𝜀�  ≤ 2𝑛𝑛−𝐶𝐶𝜀𝜀02 , 

by selecting a sufficiently large value for 𝜀𝜀0, the proof can be concluded by the application of the 
Borel--Cantelli lemma. This allows for an easy deduction of the result. 

Lemma 3.3. Under hypotheses (H1) and (H7)-(H8), with 𝑛𝑛 → ∞ 

1. 𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝐹𝐹�D(𝜃𝜃, 𝑥𝑥) − 𝔼𝔼𝐹𝐹�D(𝜃𝜃, 𝑥𝑥)� = 𝒪𝒪𝑎𝑎.𝑐𝑐𝑐𝑐. ��
𝑙𝑙𝑐𝑐𝑙𝑙𝑛𝑛

𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
�. 

2. ∑ ℙ�𝐹𝐹�D(𝜃𝜃, 𝑥𝑥) < 1 2⁄ �𝑛𝑛≥1 < ∞. 

Proof. For the demonstration of the first part of this lemma the study employed identical arguments 
as presented in the previous lemma, the only change was for Δ𝑖𝑖(𝜃𝜃, 𝑥𝑥), where: 

𝐹𝐹�D(𝜃𝜃, 𝑥𝑥) − 𝔼𝔼𝐹𝐹�D(𝜃𝜃, 𝑥𝑥) =
1

𝑛𝑛𝔼𝔼�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�
�Δ𝑖𝑖(𝜃𝜃, 𝑥𝑥)
𝑛𝑛

𝑖𝑖=1

, 

with Δ𝑖𝑖(𝜃𝜃, 𝑥𝑥) = 𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖(𝜃𝜃, 𝑥𝑥) − 𝔼𝔼𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖(𝜃𝜃, 𝑥𝑥). 

All the calculations performed earlier using variables Π𝑖𝑖(𝜃𝜃,𝑥𝑥)remain applicable when considering 
variables Δ𝑖𝑖(𝜃𝜃, 𝑥𝑥), and we obtaining 

ℙ��𝐹𝐹�D(𝜃𝜃, 𝑥𝑥) − 𝔼𝔼𝐹𝐹�D(𝜃𝜃, 𝑥𝑥)� > 𝜀𝜀�
𝑙𝑙𝑙𝑙𝑔𝑔 𝑛𝑛

𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
� ≤ 2𝑛𝑛−𝐶𝐶′𝜀𝜀2 < ∞. 

Concerning the second part where 

�𝐹𝐹�D(𝜃𝜃, 𝑥𝑥) < 1 2⁄ � ⊆ ��𝐹𝐹�D(𝜃𝜃, 𝑥𝑥) − 𝑝𝑝(𝜃𝜃, 𝑥𝑥)� > 1 2⁄ � ⇒ ℙ�𝐹𝐹�D(𝜃𝜃, 𝑥𝑥) < 1 2⁄ �  ≤  

ℙ��𝐹𝐹�D(𝜃𝜃, 𝑥𝑥) − 𝑝𝑝(𝜃𝜃, 𝑥𝑥)� > 1 2⁄ �  ≤ ℙ��𝐹𝐹�D(𝜃𝜃, 𝑥𝑥) − 𝔼𝔼𝐹𝐹�D(𝜃𝜃, 𝑥𝑥)� > 1 2⁄ �, 

because 𝔼𝔼  𝐹𝐹�D(𝜃𝜃, 𝑥𝑥) = 𝑝𝑝(𝜃𝜃, 𝑥𝑥), it is shown that  
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�ℙ�𝐹𝐹�D(𝜃𝜃, 𝑥𝑥) < 1 2⁄ �
𝑛𝑛≥1

< ∞. 

The authors finalised the proof of Theorem 3.1 by employing inequality (3.1) along with Lemma 3.1, 
Lemma 3.2, and Lemma 3.3. 

3.2. Conditional quantile estimation 

This section examines the rate of convergence of conditional quantile estimator �̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥).Clearly, the 
attainment of these results necessitated more advanced technical advancements compared to the 
ones presented earlier. For the sake of legibility of this section the authors introduced conditions that 
relate to the smoothness of the cond-cdf 𝐹𝐹(𝜃𝜃, . , 𝑥𝑥) around the conditional quantile 𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥). This is 
one of the reasons for including hypotheses (H3) and (H4). However, an additional approach to 
incorporate this local shape constraint was to assume that: 

(H9) �
𝐹𝐹(𝑘𝑘)(𝜃𝜃,𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), 𝑥𝑥) = 0, 𝑖𝑖𝑖𝑖 1 ≤ 𝑘𝑘 < 𝑙𝑙; 

𝐹𝐹(𝑙𝑙)(𝜃𝜃, . , 𝑥𝑥) 𝑖𝑖𝑠𝑠 𝑢𝑢𝑛𝑛𝑖𝑖𝑖𝑖𝑙𝑙𝑢𝑢𝑚𝑚𝑙𝑙𝑦𝑦 𝑐𝑐𝑙𝑙𝑛𝑛𝑡𝑡𝑖𝑖𝑛𝑛𝑢𝑢𝑙𝑙𝑢𝑢𝑠𝑠 𝑙𝑙𝑛𝑛 𝑆𝑆ℝ
𝑠𝑠𝑢𝑢𝑐𝑐ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 0 < 𝐶𝐶 < 𝐹𝐹(𝑙𝑙)(𝜃𝜃,𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), 𝑥𝑥) < ∞.

 

(H10) ∀ 𝑖𝑖 ≠ 𝑗𝑗,the cond-cdf of �𝑌𝑌𝑖𝑖 ,𝑌𝑌𝑗𝑗� given �〈𝜃𝜃,𝑋𝑋𝑖𝑖〉, 〈𝜃𝜃,𝑋𝑋𝑗𝑗〉� is continuous at �𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥),𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥)�. 

Proposition 3.1. Assuming that the hypotheses (H1), and (H3)-(H10) hold, in the case when 

∃𝛽𝛽 > 0,𝑛𝑛𝛽𝛽𝑔𝑔𝑛𝑛 𝑛𝑛→∞
�⎯⎯�∞,  and  if lim

𝑛𝑛→∞
𝑙𝑙𝑐𝑐𝑙𝑙𝑛𝑛

𝑛𝑛𝑙𝑙𝑛𝑛2𝑙𝑙𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
= 0, 

then 

𝑠𝑠𝑢𝑢𝑝𝑝
𝑡𝑡∈𝑆𝑆ℝ

�𝐹𝐹�(𝑙𝑙)(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝐹𝐹(𝑙𝑙)(𝜃𝜃,𝑦𝑦, 𝑥𝑥)� = 𝒪𝒪�ℎ𝑛𝑛
𝛼𝛼1 + 𝑔𝑔𝑛𝑛

𝛼𝛼2�+ 𝒪𝒪𝑎𝑎.𝑐𝑐𝑐𝑐. ��
𝑙𝑙𝑙𝑙𝑔𝑔𝑛𝑛

𝑛𝑛𝑔𝑔𝑛𝑛2𝑙𝑙𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
�. 

Proof. Therefore the stated result follows the same path as Theorem 3.1 and can be directly deduced 
from decomposition (3.1): 

𝐿𝐿(𝜃𝜃,𝑦𝑦, 𝑥𝑥) = 𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝐹𝐹�(𝑙𝑙)(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝐹𝐹(𝑙𝑙)(𝜃𝜃,𝑦𝑦, 𝑥𝑥)� 

 ≤
1

𝐹𝐹�𝐷𝐷(𝜃𝜃, 𝑥𝑥)
𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝐹𝐹�𝑁𝑁
(𝑙𝑙)(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝔼𝔼𝐹𝐹�𝑁𝑁

(𝑙𝑙)(𝜃𝜃,𝑦𝑦, 𝑥𝑥)� 

 +
1

𝐹𝐹�𝐷𝐷(𝜃𝜃, 𝑥𝑥)
𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝔼𝔼𝐹𝐹�𝑁𝑁
(𝑙𝑙)(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝐹𝐹(𝑙𝑙)(𝜃𝜃,𝑦𝑦, 𝑥𝑥)� 

+
𝐹𝐹(𝑙𝑙)(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)
𝐹𝐹�𝐷𝐷(𝜃𝜃, 𝑥𝑥)

𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝑝𝑝(𝜃𝜃, 𝑥𝑥) − 𝐹𝐹�𝐷𝐷(𝜃𝜃, 𝑥𝑥)�. 

(3.2) 

Similarly to the previous approach considering decomposition (3.2), it was appropriate to demonstrate 
the results of two lemmas, Lemma 3.4 and Lemma 3.5 in combination with the first part of Lemma 3.1 
and Lemma 3.2, to conclude the result of Theorem 3.2. 

Lemma 3.4. Assuming hypotheses (H1) and (H4)-(H9): 

𝑠𝑠𝑢𝑢𝑝𝑝
𝑡𝑡∈𝑆𝑆ℝ

�𝐹𝐹(𝑙𝑙)(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝔼𝔼 �𝐹𝐹�𝑁𝑁
(𝑙𝑙)(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�� = 𝒪𝒪�ℎ𝑛𝑛

𝛼𝛼1 + 𝑔𝑔𝑛𝑛
𝛼𝛼2�. 

Proof. In order to apply this deterministic term, the calculations conducted in the proof of Lemma 3.1 
did not involve successive derivatives, i.e. the substitution of 𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥)  (resp.𝐹𝐹�𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥) ) with 
𝐹𝐹(𝑙𝑙)(𝜃𝜃,𝑦𝑦, 𝑥𝑥)  (resp.𝐹𝐹�𝑁𝑁

(𝑙𝑙)(𝜃𝜃, 𝑦𝑦, 𝑥𝑥) ). As a result, the outcome of Lemma 3.4 remains valid under the 



Single Functional Index Quantile Regression for Functional Data…  11 
 

differentiability conditions (assumptions (H4) and (H5)), By following the approach and using the 
notations introduced in the proof of Lemma 3.1 

𝐹𝐹(𝑙𝑙)(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝔼𝔼𝐹𝐹�𝑁𝑁
(𝑙𝑙)(𝜃𝜃,𝑦𝑦, 𝑥𝑥) = 𝒪𝒪�ℎ𝑛𝑛

𝛼𝛼1 + 𝑔𝑔𝑛𝑛
𝛼𝛼2�. 

 

Lemma 3.5. Considering the hypotheses of Theorem 3.2, one obtains 

𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝐹𝐹�𝑁𝑁
(𝑙𝑙)(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝔼𝔼 �𝐹𝐹�𝑁𝑁

(𝑙𝑙)(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)�� = 𝒪𝒪𝑎𝑎.𝑐𝑐𝑐𝑐. ��
𝑙𝑙𝑙𝑙𝑔𝑔𝑛𝑛

𝑛𝑛𝑔𝑔𝑛𝑛2𝑙𝑙𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
�. 

Proof. To establish the asymptotic behaviour of 𝐹𝐹�𝑁𝑁
(𝑙𝑙)(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝔼𝔼𝐹𝐹�𝑁𝑁

(𝑙𝑙)(𝜃𝜃,𝑦𝑦, 𝑥𝑥), the proof followed the 
same approach as in the proof of Lemma 3.2.  

The only modification was replacing 𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥) (resp. 𝐹𝐹�𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥)) with 𝐹𝐹(𝑙𝑙)(𝜃𝜃,𝑦𝑦, 𝑥𝑥) (resp. 𝐹𝐹�𝑁𝑁
(𝑙𝑙)(𝜃𝜃,𝑦𝑦, 𝑥𝑥)). 

It should be noted that (H5)-(ii) and (H10) allowed to demonstrate that 

𝔼𝔼�𝛿𝛿𝑖𝑖𝐻𝐻(𝑙𝑙)�𝑔𝑔𝑛𝑛−1(𝑦𝑦 − 𝑌𝑌𝑖𝑖)�𝛿𝛿𝑚𝑚𝐻𝐻(𝑙𝑙)�𝑔𝑔𝑛𝑛−1(𝑦𝑦 − 𝑌𝑌𝑚𝑚)��(𝑋𝑋𝑖𝑖,𝑋𝑋𝑚𝑚)� = 𝒪𝒪(𝑔𝑔𝑛𝑛2). 

Meanwhile, (H4) entails that 𝔼𝔼�𝛿𝛿𝑖𝑖𝐻𝐻(𝑙𝑙)�𝑔𝑔𝑛𝑛−1(𝑦𝑦 − 𝑌𝑌𝑖𝑖)��𝑋𝑋𝑖𝑖� = 𝒪𝒪(𝑔𝑔𝑛𝑛). 

Certainly, it can be established that 

𝐹𝐹�𝑁𝑁
(𝑙𝑙)(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝔼𝔼𝐹𝐹�𝑁𝑁

(𝑙𝑙)(𝜃𝜃,𝑦𝑦, 𝑥𝑥) =
1
𝑛𝑛
�𝐴𝐴𝑖𝑖(𝜃𝜃,𝑦𝑦, 𝑥𝑥)
𝑛𝑛

𝑖𝑖=1

, 

where 

𝐴𝐴𝑖𝑖 = 𝑔𝑔𝑛𝑛−𝑙𝑙𝛿𝛿𝑖𝑖𝐻𝐻𝑖𝑖
(𝑙𝑙)(𝑦𝑦)Ξi(𝜃𝜃, 𝑥𝑥) − 𝔼𝔼�𝑔𝑔𝑛𝑛−𝑙𝑙𝛿𝛿𝑖𝑖𝐻𝐻𝑖𝑖

(𝑙𝑙)(𝑦𝑦)Ξi(𝜃𝜃, 𝑥𝑥)�, 

where Ξi(𝜃𝜃, 𝑥𝑥) =
𝐾𝐾�ℎ𝑛𝑛−1(〈𝜃𝜃,𝑥𝑥−𝑋𝑋𝑖𝑖〉)�

𝔼𝔼�𝐾𝐾1(𝜃𝜃,𝑥𝑥)�
 𝐴𝐴𝑖𝑖(𝜃𝜃,𝑦𝑦, 𝑥𝑥) has zero mean and satisfies |𝐴𝐴𝑖𝑖(𝜃𝜃,𝑦𝑦, 𝑥𝑥)| ≤ 𝐶𝐶𝑔𝑔𝑛𝑛−𝑙𝑙𝜙𝜙𝜃𝜃,𝑥𝑥

−1(ℎ𝑛𝑛).  

Now, by the boundedness of 𝐻𝐻(𝑙𝑙), one can readily employ similar arguments from the second part of 
Lemma 3.2 to deduce: 

𝐹𝐹�𝑁𝑁
(𝑙𝑙)(𝜃𝜃, 𝑦𝑦, 𝑥𝑥) − 𝔼𝔼𝐹𝐹�𝑁𝑁

(𝑙𝑙)(𝜃𝜃, 𝑦𝑦, 𝑥𝑥) = 𝒪𝒪𝑎𝑎.𝑐𝑐𝑐𝑐. ��
𝑙𝑙𝑙𝑙𝑔𝑔𝑛𝑛

𝑛𝑛𝑔𝑔𝑛𝑛2𝑙𝑙𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
�. 

This directly yields the result presented in Lemma 3.5. 

Corollary 3.1. Under hypotheses of Theorem 3.1, one obtains 

�̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) − 𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥)
𝑛𝑛→∞
�⎯⎯�0,𝑎𝑎. 𝑐𝑐𝑙𝑙. 

Proof. The proof relied on the pointwise convergence of 𝐹𝐹�(𝜃𝜃, . , 𝑥𝑥) and the Lipschitz property stated in 
(H5)-(i) and hypothesis (H6), where 𝐹𝐹�(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) is both a continuous and strictly increasing function. 
Therefore 

∀ 𝜖𝜖 > 0,∃𝛿𝛿(𝜖𝜖) > 0,∀𝑦𝑦, �𝐹𝐹�(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝐹𝐹�(𝜃𝜃,𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), 𝑥𝑥)� ≤  𝛿𝛿(𝜖𝜖)  ⇒ |𝑡𝑡 −  𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥)| ≤ 𝜖𝜖. 

This leads to ∀ 𝜖𝜖 > 0,∃𝛿𝛿(𝜖𝜖) > 0, 
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ℙ���̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) − 𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥)� >  𝜖𝜖� ≤ ℙ��𝐹𝐹��𝜃𝜃, �̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥),𝑥𝑥� − 𝐹𝐹�(𝜃𝜃,𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥),𝑥𝑥)� ≥  𝛿𝛿(𝜖𝜖)�

 = ℙ�� 𝐹𝐹(𝜃𝜃,𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), 𝑥𝑥) − 𝐹𝐹�(𝜃𝜃,𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥),𝑥𝑥)� ≥  𝛿𝛿(𝜖𝜖)� ,
 

since (2.2) and (2.3), implying that 

𝐹𝐹��𝜃𝜃, �̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), 𝑥𝑥� = 𝛾𝛾 =  𝐹𝐹(𝜃𝜃,𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), 𝑥𝑥). 

Moreover 

� 𝐹𝐹�𝜃𝜃, �̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), 𝑥𝑥� −  𝐹𝐹(𝜃𝜃,𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), 𝑥𝑥)� = � 𝐹𝐹�𝜃𝜃, �̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥),𝑥𝑥� −  𝐹𝐹��𝜃𝜃, �̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), 𝑥𝑥��
 ≤ 𝑠𝑠𝑢𝑢𝑝𝑝

𝑦𝑦∈𝑆𝑆ℝ
�𝐹𝐹�(𝜃𝜃,𝑦𝑦, 𝑥𝑥) −  𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�.  

The consistency of �̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) can be derived directly from Theorem 3.1 and the following inequality 

�ℙ��𝜗𝜗𝑛𝑛,𝜃𝜃(𝛾𝛾, 𝑥𝑥)− 𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥)� ≥  𝜖𝜖� ≤�ℙ� sup
𝑦𝑦∈𝑆𝑆ℝ

�𝐹𝐹�(𝜃𝜃,𝑦𝑦, 𝑥𝑥) −  𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥)� ≥ 𝛿𝛿(𝜖𝜖)� .
𝑛𝑛≥1𝑛𝑛≥1

 

Theorem 3.2. Under hypotheses (H1)-(H10), if ∃𝛽𝛽 > 0,𝑛𝑛𝛽𝛽𝑔𝑔𝑛𝑛 𝑛𝑛→∞
�⎯⎯�∞, and if  

lim
𝑛𝑛→∞

𝑙𝑙𝑐𝑐𝑙𝑙𝑛𝑛
𝑛𝑛𝑙𝑙𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)

= 0, one has 

�̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) − 𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) = 𝒪𝒪 ��ℎ𝑛𝑛
𝛼𝛼1 + 𝑔𝑔𝑛𝑛

𝛼𝛼2�
1
𝑙𝑙�+ 𝒪𝒪𝑎𝑎.𝑐𝑐𝑐𝑐. ��

𝑙𝑙𝑙𝑙𝑔𝑔 𝑛𝑛
𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)�

1
2𝑙𝑙
�. 

Proof. The demonstration relies on the Taylor expansion of 𝐹𝐹�(𝜃𝜃, . , 𝑥𝑥)  around 𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) and the 
application of (H9): 

𝐹𝐹�(𝜃𝜃,𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), 𝑥𝑥) − 𝐹𝐹��𝜃𝜃, �̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), 𝑥𝑥� = �
�𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) − �̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥)�

𝑚𝑚−1

𝑚𝑚!

𝑙𝑙−1

𝑚𝑚=1

𝐹𝐹�(𝑚𝑚)(𝜃𝜃,𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), 𝑥𝑥)

 +
�𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) − �̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥)�

𝑙𝑙

𝑙𝑙!
𝐹𝐹�(𝑙𝑙)(𝜃𝜃,𝜗𝜗𝜃𝜃∗(𝛾𝛾, 𝑥𝑥),𝑥𝑥)

 = �
�𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) − �̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥)�

𝑚𝑚−1

𝑚𝑚!

𝑙𝑙−1

𝑚𝑚=1

�𝐹𝐹�(𝑚𝑚)(𝜃𝜃,𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), 𝑥𝑥) − 𝐹𝐹(𝑚𝑚)(𝜃𝜃,𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), 𝑥𝑥)�

 

+
�𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) − �̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥)�

𝑙𝑙

𝑙𝑙!
𝐹𝐹�(𝑙𝑙)(𝜃𝜃,𝜗𝜗𝜃𝜃∗(𝛾𝛾, 𝑥𝑥), 𝑥𝑥), 

where  min �𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), �̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥)� < 𝜗𝜗𝜃𝜃∗(𝛾𝛾, 𝑥𝑥) < max �𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), �̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥)�.  Let us now consider the 
following consequences.  

Given Proposition 3.1, Corollary 3.1 and (H9), it follows that: 

𝐹𝐹�(𝑙𝑙)(𝜃𝜃,𝜗𝜗𝜃𝜃∗(𝛾𝛾, 𝑥𝑥), 𝑥𝑥) ⟶𝐹𝐹(𝑙𝑙)(𝜃𝜃,𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), 𝑥𝑥) ≠ 0,𝑎𝑎. 𝑐𝑐𝑙𝑙. 

Then one derives 
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�𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥)) − �̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥)�𝑙𝑙 = 𝒪𝒪 �𝐹𝐹�(𝜃𝜃,𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), 𝑥𝑥) − 𝐹𝐹(𝜃𝜃,𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), 𝑥𝑥)�

 +𝒪𝒪�� �𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) − �̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥)�
𝑚𝑚

𝑙𝑙−1

𝑚𝑚=1

�𝐹𝐹�(𝑚𝑚)(𝜃𝜃,𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), 𝑥𝑥)

 −𝐹𝐹(𝑚𝑚)(𝜃𝜃,𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥),𝑥𝑥)�� ,𝑎𝑎. 𝑐𝑐𝑙𝑙.

 

By comparing the convergence rates in Theorem 3.1 and Proposition 3.1, one obtains 

�𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥)) − �̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥)�𝑙𝑙 = 𝒪𝒪 �𝐹𝐹�(𝜃𝜃,𝑦𝑦, 𝑥𝑥) −  𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥)� ,𝑎𝑎. 𝑐𝑐𝑙𝑙. 

The combination of the first part of Lemma 3.3 with Lemmas 3.4-3.5 allows to obtain the desired result. 

4. Uniform almost complete convergence and rate of convergence 

In this section the authors establish the uniform version of Theorem 3.1, Proposition 3.1 and Theorem 3.2, 
which are standard extensions of the pointwise results. Clearly, achieving these results necessitated more 
intricate technical developments beyond those presented earlier. To enhance the clarity of this section, it 
was necessary to employ additional tools and consider certain topological conditions (see Hamri et al., 
2022). Initially, owing to the compactness of the sets 𝑆𝑆ℋ  and Θℋ  it was possible to cover them using 
a finite number of disjoint intervals. Let 𝑑𝑑𝑛𝑛

𝑆𝑆ℋ  and 𝑑𝑑𝑛𝑛
Θℋdenote the minimal numbers of open balls with 

radius 𝑢𝑢𝑛𝑛 in ℋ that are required to cover 𝑆𝑆ℋ and Θℋ , respectively; within these intervals, the points 𝑥𝑥𝑘𝑘 
(resp. 𝑡𝑡𝑗𝑗) ∈  ℋ. 

𝑆𝑆ℋ ⊂ �𝐵𝐵𝜃𝜃

𝑑𝑑𝑛𝑛
𝑆𝑆ℋ

𝑘𝑘=1

(𝑥𝑥𝑘𝑘 , 𝑢𝑢𝑛𝑛) 𝑎𝑎𝑛𝑛𝑑𝑑 Θℋ ⊂ � 𝐵𝐵𝜃𝜃

𝑑𝑑𝑛𝑛
Θℋ

𝑗𝑗=1

�𝑡𝑡𝑗𝑗, 𝑢𝑢𝑛𝑛�. 

4.1. Conditional distribution estimation 

The objective of this part was to demonstrate almost complete uniform convergence. In order to 
extend the previously obtained results, it was essential to introduce a topological framework for the 
functional space of the observations and the functional character of the model. The study’s asymptotic 
conclusions made use of the topological properties in the functional space of the observations. It is 
worth mentioning that all the convergence rates rely on the assumption of probability measure 
concentration of the functional variable within small balls, as well as the concept of Kolmogorov's 
entropy, which quantifies the number of balls required to cover a given set. To achieve this objective, 
the authors introduced the following conditions: 

(U1) There exists function 𝜙𝜙(·)that is differentiable, ∀𝑥𝑥 ∈ 𝑆𝑆ℋ and ∀𝜃𝜃 ∈ Θℋ,  

0 < 𝐶𝐶𝜙𝜙(ℎ) ≤ 𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ) ≤ 𝐶𝐶′𝜙𝜙(ℎ) < ∞ and∃𝜂𝜂0 > 0,𝜂𝜂 < 𝜂𝜂0,𝜙𝜙′(𝜂𝜂) < 𝐶𝐶. 

(U2) Kernel K satisfies both (H3) and the Lipschitz condition, which states that |𝐾𝐾(𝑥𝑥) − 𝐾𝐾(𝑦𝑦)| ≤
‖𝑥𝑥 − 𝑦𝑦‖. 

(U3) ∀(𝑦𝑦1,𝑦𝑦2) ∈ 𝑆𝑆ℝ × 𝑆𝑆ℝ,∀(𝑥𝑥1,𝑥𝑥2) ∈ 𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑥𝑥 ,∀𝜃𝜃 ∈ Θℋ, 

|𝐹𝐹(𝜃𝜃,𝑦𝑦1, 𝑥𝑥1) − 𝐹𝐹(𝜃𝜃,𝑦𝑦2, 𝑥𝑥2)| ≤ 𝐶𝐶(‖𝑥𝑥1 − 𝑥𝑥2‖𝛼𝛼1 + |𝑦𝑦1 − 𝑦𝑦2|𝛼𝛼2).  

(U4) For some 𝜈𝜈 ∈ (0, 1), lim
𝑛𝑛→∞

𝑛𝑛𝜈𝜈𝑔𝑔𝑛𝑛 = ∞ , and for 𝑢𝑢𝑛𝑛 = 𝒪𝒪 �𝑙𝑙𝑐𝑐𝑙𝑙𝑛𝑛
𝑛𝑛𝑙𝑙𝑛𝑛

� , the sequences 𝑑𝑑𝑛𝑛
𝑆𝑆ℋ  and 𝑑𝑑𝑛𝑛

Θℋ  

satisfy: 
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⎩
⎪⎪
⎨

⎪⎪
⎧(𝑖𝑖)

(𝑙𝑙𝑙𝑙𝑔𝑔 𝑛𝑛)2

𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙(ℎ𝑛𝑛) < 𝑙𝑙𝑙𝑙𝑔𝑔 𝑑𝑑𝑛𝑛
𝑆𝑆ℋ + 𝑙𝑙𝑙𝑙𝑔𝑔 𝑑𝑑𝑛𝑛

𝛩𝛩ℋ <
𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙(ℎ𝑛𝑛)
𝑙𝑙𝑙𝑙𝑔𝑔 𝑛𝑛

,

(𝑖𝑖𝑖𝑖) �𝑛𝑛
1
2𝛼𝛼2� �𝑑𝑑𝑛𝑛

𝑆𝑆ℋ𝑑𝑑𝑛𝑛
𝛩𝛩ℋ�

1−𝜉𝜉
∞

𝑛𝑛=1

< ∞ 𝑖𝑖𝑙𝑙𝑢𝑢 𝑠𝑠𝑙𝑙𝑚𝑚𝑠𝑠 𝜉𝜉 > 1,

(𝑖𝑖𝑖𝑖𝑖𝑖)𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙(ℎ𝑛𝑛) = 𝒪𝒪((𝑙𝑙𝑙𝑙𝑔𝑔 𝑛𝑛)2).

 

(U5) ∀(𝑦𝑦1,𝑦𝑦2) ∈ 𝑆𝑆ℝ × 𝑆𝑆ℝ,∀(𝑥𝑥1,𝑥𝑥2) ∈ 𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑥𝑥 ,∀𝜃𝜃 ∈ Θℋ, 
�𝐹𝐹(𝑙𝑙)(𝜃𝜃,𝑦𝑦1, 𝑥𝑥1) − 𝐹𝐹(𝑙𝑙)(𝜃𝜃,𝑦𝑦2, 𝑥𝑥2)� ≤ 𝐶𝐶(‖𝑥𝑥1 − 𝑥𝑥2‖𝛼𝛼1 + |𝑦𝑦1 − 𝑦𝑦2|𝛼𝛼2). 

(U6) For some𝜈𝜈 ∈ (0, 1), lim
𝑛𝑛→∞

𝑛𝑛𝜈𝜈𝑔𝑔𝑛𝑛 = ∞, and for 𝑢𝑢𝑛𝑛 = 𝒪𝒪 �𝑙𝑙𝑐𝑐𝑙𝑙𝑛𝑛
𝑛𝑛𝑙𝑙𝑛𝑛

�, the sequences 𝑑𝑑𝑛𝑛
𝑆𝑆ℋ  and 𝑑𝑑𝑛𝑛

Θℋ  satisfy: 

⎩
⎪⎪
⎨

⎪⎪
⎧ (𝑖𝑖)

(𝑙𝑙𝑙𝑙𝑔𝑔 𝑛𝑛)2

𝑛𝑛𝑔𝑔𝑛𝑛2𝑙𝑙𝜙𝜙(ℎ𝑛𝑛)
< 𝑙𝑙𝑙𝑙𝑔𝑔 𝑑𝑑𝑛𝑛

𝑆𝑆ℋ + 𝑙𝑙𝑙𝑙𝑔𝑔 𝑑𝑑𝑛𝑛
𝛩𝛩ℋ <

𝑛𝑛𝑔𝑔𝑛𝑛2𝑙𝑙𝜙𝜙(ℎ𝑛𝑛)
𝑙𝑙𝑙𝑙𝑔𝑔 𝑛𝑛

,

(𝑖𝑖𝑖𝑖) �𝑛𝑛
(3𝜈𝜈+1)

2� �𝑑𝑑𝑛𝑛
𝑆𝑆ℋ𝑑𝑑𝑛𝑛

𝛩𝛩ℋ�
1−𝜉𝜉

∞

𝑛𝑛=1

< ∞ 𝑖𝑖𝑙𝑙𝑢𝑢 𝑠𝑠𝑙𝑙𝑚𝑚𝑠𝑠 𝜉𝜉 > 1,

(𝑖𝑖𝑖𝑖𝑖𝑖)𝑛𝑛𝑔𝑔𝑛𝑛2𝑙𝑙𝜙𝜙(ℎ𝑛𝑛) = 𝒪𝒪((𝑙𝑙𝑙𝑙𝑔𝑔 𝑛𝑛)2).

 

In what follows, denote  

Υ𝑖𝑖(𝜃𝜃, 𝑥𝑥) =
1

𝑛𝑛𝜙𝜙(ℎ𝑛𝑛) 1𝐵𝐵𝜃𝜃(𝑥𝑥,ℎ)∪𝐵𝐵𝜃𝜃(𝑥𝑥𝑘𝑘(𝑥𝑥),ℎ)(𝑋𝑋𝑖𝑖),

Ω𝑖𝑖(𝜃𝜃, 𝑥𝑥) =
1

𝑛𝑛𝜙𝜙(ℎ𝑛𝑛) 1𝐵𝐵𝜃𝜃(𝑥𝑥𝑘𝑘(𝑥𝑥),ℎ)∪𝐵𝐵𝑡𝑡𝑗𝑗(𝜃𝜃)(𝑥𝑥𝑘𝑘(𝑥𝑥),ℎ)(𝑋𝑋𝑖𝑖),

Ψ𝑖𝑖�𝑡𝑡𝑗𝑗(𝜃𝜃),𝑥𝑥𝑘𝑘(𝑥𝑥)� =
𝛿𝛿𝑖𝑖𝐾𝐾 �ℎ𝑛𝑛−1�< 𝑥𝑥𝑘𝑘(𝑥𝑥) − 𝑋𝑋𝑖𝑖, 𝑡𝑡𝑗𝑗(𝜃𝜃) >��

𝔼𝔼 �𝐾𝐾 �ℎ𝑛𝑛−1�< 𝑥𝑥𝑘𝑘(𝑥𝑥) − 𝑋𝑋𝑖𝑖, 𝑡𝑡𝑗𝑗(𝜃𝜃) >���
.

 

Σ𝑖𝑖(𝜃𝜃, 𝑥𝑥) =
𝛿𝛿𝑖𝑖𝐾𝐾 �ℎ𝑛𝑛−1�〈𝑡𝑡𝑗𝑗(𝜃𝜃),𝑥𝑥𝑘𝑘(𝑥𝑥) − 𝑋𝑋𝑖𝑖〉��

𝔼𝔼 �𝐾𝐾 �ℎ𝑛𝑛−1�〈𝑡𝑡𝑗𝑗(𝜃𝜃),𝑥𝑥𝑘𝑘(𝑥𝑥) − 𝑋𝑋𝑖𝑖〉���
𝐻𝐻 �𝑔𝑔𝑛𝑛−1�𝑦𝑦𝑘𝑘(𝑦𝑦) − 𝑌𝑌𝑖𝑖��

 −𝔼𝔼

⎝

⎜
⎛ 𝛿𝛿𝑖𝑖𝐾𝐾 �ℎ𝑛𝑛−1�〈𝑡𝑡𝑗𝑗(𝜃𝜃),𝑥𝑥𝑘𝑘(𝑥𝑥) − 𝑋𝑋𝑖𝑖〉��

𝔼𝔼�𝐾𝐾 �ℎ𝑛𝑛−1�〈𝑡𝑡𝑗𝑗(𝜃𝜃),𝑥𝑥𝑘𝑘(𝑥𝑥) − 𝑋𝑋𝑖𝑖〉���
𝐻𝐻 �𝑔𝑔𝑛𝑛−1�𝑦𝑦𝑘𝑘(𝑦𝑦) − 𝑌𝑌𝑖𝑖��

⎠

⎟
⎞

 

and Σ𝑖𝑖
(𝑙𝑙)(𝜃𝜃, 𝑥𝑥) =

1
𝑔𝑔𝑛𝑛𝑙𝑙

𝛿𝛿𝑖𝑖𝐾𝐾 �ℎ𝑛𝑛−1�〈𝑡𝑡𝑗𝑗(𝜃𝜃),𝑥𝑥𝑘𝑘(𝑥𝑥) − 𝑋𝑋𝑖𝑖〉��

𝔼𝔼 �𝐾𝐾 �ℎ𝑛𝑛−1�〈𝑡𝑡𝑗𝑗(𝜃𝜃), 𝑥𝑥𝑘𝑘(𝑥𝑥) − 𝑋𝑋𝑖𝑖〉���
𝐻𝐻(𝑙𝑙) �𝑔𝑔𝑛𝑛−1�𝑦𝑦𝑘𝑘(𝑦𝑦) − 𝑌𝑌𝑖𝑖��

−
1
𝑔𝑔𝑛𝑛𝑙𝑙

𝔼𝔼

⎝

⎜
⎛ 𝛿𝛿𝑖𝑖𝐾𝐾 �ℎ𝑛𝑛−1�〈𝑡𝑡𝑗𝑗(𝜃𝜃),𝑥𝑥𝑘𝑘(𝑥𝑥) − 𝑋𝑋𝑖𝑖〉��

𝔼𝔼 �𝐾𝐾 �ℎ𝑛𝑛−1�〈𝑡𝑡𝑗𝑗(𝜃𝜃),𝑥𝑥𝑘𝑘(𝑥𝑥) − 𝑋𝑋𝑖𝑖〉���
𝐻𝐻(𝑙𝑙) �𝑔𝑔𝑛𝑛−1�𝑦𝑦𝑘𝑘(𝑦𝑦) − 𝑌𝑌𝑖𝑖��

⎠

⎟
⎞

.

 

Theorem 4.1. Assuming hypotheses (H1)-(H2), (H5)-(H7) and (A1)-(A4), if ∃𝛽𝛽 > 0,𝑛𝑛𝛽𝛽𝑔𝑔𝑛𝑛 𝑛𝑛→∞
�⎯⎯� ∞, and if 

lim
𝑛𝑛→∞

𝑙𝑙𝑐𝑐𝑙𝑙𝑛𝑛
𝑛𝑛𝑙𝑙𝑛𝑛2𝑙𝑙𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)

= 0, one has 

𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝐹𝐹�(𝑙𝑙)(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝐹𝐹(𝑙𝑙)(𝜃𝜃,𝑦𝑦, 𝑥𝑥)� = 𝒪𝒪�ℎ𝑛𝑛
𝛼𝛼1 + 𝑔𝑔𝑛𝑛

𝛼𝛼2� + 𝒪𝒪𝑎𝑎.𝑐𝑐𝑐𝑐. ��
𝑙𝑙𝑙𝑙𝑔𝑔 𝑑𝑑𝑛𝑛

𝑆𝑆ℋ𝑑𝑑𝑛𝑛
𝛩𝛩ℋ

𝑛𝑛𝑔𝑔𝑛𝑛2𝑙𝑙𝜙𝜙(ℎ𝑛𝑛)
�. 
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Proof. Clearly, the proof of these results can be derived from the decomposition (3.2) and the following 
intermediate results, which essentially serve as the uniform version of Proposition 3.1. 

Lemma 4.1. Under conditions (H1)-(H2) and (H5)-(H7),  

𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝐹𝐹(𝑙𝑙)(𝜃𝜃, 𝑦𝑦, 𝑥𝑥) − 𝔼𝔼 �𝐹𝐹�𝑁𝑁
(𝑙𝑙)(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�� = 𝒪𝒪�ℎ𝑛𝑛

𝛼𝛼1 + 𝑔𝑔𝑛𝑛
𝛼𝛼2�. 

Proof. The proof follows the same path during the proof of Lemma 3.4. 

Lemma 4.2. Under assumptions of Theorem 4.1: 

𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

�𝐹𝐹�𝐷𝐷(𝜃𝜃, 𝑥𝑥)− 𝑝𝑝(𝜃𝜃, 𝑥𝑥)� = 𝒪𝒪𝑎𝑎.𝑐𝑐𝑐𝑐. ��
𝑙𝑙𝑙𝑙𝑔𝑔𝑑𝑑𝑛𝑛

𝑆𝑆ℋ𝑑𝑑𝑛𝑛
𝛩𝛩ℋ

𝑛𝑛𝜙𝜙(ℎ𝑛𝑛)
�. 

Proof. Following a similar methodology as demonstrated in the proof of Lemma 4.4 in (Kadiri et al., 
2018), the proof can be readily completed. However, for the sake of brevity, the authors omitted the 
detailed proof in this context. 

Lemma 4.3. Considering assumptions of Theorem 4.1: 

𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝐹𝐹�𝑁𝑁
(𝑙𝑙)(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝔼𝔼�𝐹𝐹�𝑁𝑁

(𝑙𝑙)(𝜃𝜃, 𝑦𝑦, 𝑥𝑥)�� = 𝒪𝒪𝑎𝑎.𝑐𝑐𝑐𝑐. ��
𝑙𝑙𝑙𝑙𝑔𝑔𝑑𝑑𝑛𝑛

𝑆𝑆ℋ𝑑𝑑𝑛𝑛
𝛩𝛩ℋ

𝑛𝑛𝑔𝑔𝑛𝑛2𝑙𝑙𝜙𝜙(ℎ𝑛𝑛)
�. 

Proof. For all 𝑥𝑥 ∈ 𝑆𝑆ℋ and ∀𝜃𝜃 ∈ Θℋ, it was set 

𝑘𝑘(𝑥𝑥) = arg  min
𝑘𝑘∈�1,⋯,𝑑𝑑𝑛𝑛

𝑆𝑆ℋ�
‖𝑥𝑥 − 𝑥𝑥𝑘𝑘‖ , 𝑗𝑗(𝜃𝜃) = arg min

�1,⋯,𝑑𝑑𝑛𝑛
𝛩𝛩ℋ�

�𝜃𝜃 − 𝑡𝑡𝑗𝑗� 

and by the compact property of 𝑆𝑆ℝ ⊂ ℝ, one has  𝑆𝑆ℝ ⊂ ⋃ (𝑦𝑦𝑚𝑚 − 𝑙𝑙𝑛𝑛,𝑦𝑦𝑚𝑚 + 𝑙𝑙𝑛𝑛)𝜏𝜏𝑛𝑛
𝑚𝑚=1   with 𝑙𝑙𝑛𝑛  and 𝜏𝜏𝑛𝑛  can  

be chosen such that  𝑙𝑙𝑛𝑛 = 𝒪𝒪(𝜏𝜏𝑛𝑛−1) = 𝒪𝒪�𝑛𝑛−(3𝜈𝜈+1) 2⁄ � .  In the context of abstract semi-metric spaces, 
it is usually assumed that 𝑑𝑑𝑛𝑛

𝑆𝑆ℋ𝑢𝑢𝑛𝑛  ( 𝑑𝑑𝑛𝑛
𝛩𝛩ℋ𝑢𝑢𝑛𝑛 ) is bounded; for mode discussion refer to (Ferraty and  

Vieu, 2008). Taking  𝑘𝑘(𝑦𝑦) = arg min
𝑘𝑘∈{1,⋯,𝜏𝜏𝑛𝑛}

|𝑦𝑦 − 𝑦𝑦𝑘𝑘|. Let us consider the following decomposition 

Λ�𝑁𝑁
(𝑙𝑙)(𝜃𝜃,𝑦𝑦, 𝑥𝑥) = 𝑠𝑠𝑢𝑢𝑝𝑝

𝜃𝜃∈Θℋ
𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝐹𝐹�𝑁𝑁
(𝑙𝑙)(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝔼𝔼�𝐹𝐹�𝑁𝑁

(𝑙𝑙)(𝜃𝜃,𝑦𝑦, 𝑥𝑥)��

≤ 𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

sup
𝑦𝑦∈𝑆𝑆ℝ

�𝐹𝐹�𝑁𝑁
(𝑙𝑙)(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝐹𝐹�𝑁𝑁

(𝑙𝑙)�𝜃𝜃,𝑦𝑦, 𝑥𝑥𝑘𝑘(𝑥𝑥)��

+ 𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

sup
𝑦𝑦∈𝑆𝑆ℝ

�𝐹𝐹�𝑁𝑁
(𝑙𝑙)�𝜃𝜃,𝑦𝑦, 𝑥𝑥𝑘𝑘(𝑥𝑥)� − 𝐹𝐹�𝑁𝑁

(𝑙𝑙)�𝑡𝑡𝑗𝑗(𝜃𝜃),𝑦𝑦, 𝑥𝑥𝑘𝑘(𝑥𝑥)��

 

+ 𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

sup
𝑦𝑦∈𝑆𝑆ℝ

�𝐹𝐹�𝑁𝑁
(𝑙𝑙)�𝑡𝑡𝑗𝑗(𝜃𝜃),𝑦𝑦, 𝑥𝑥𝑘𝑘(𝑥𝑥)� − 𝐹𝐹�𝑁𝑁

(𝑙𝑙)�𝑡𝑡𝑗𝑗(𝜃𝜃),𝑦𝑦𝑚𝑚(𝑦𝑦),𝑥𝑥𝑘𝑘(𝑥𝑥)��

+ 𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

sup
𝑦𝑦∈𝑆𝑆ℝ

�𝐹𝐹�𝑁𝑁
(𝑙𝑙)�𝑡𝑡𝑗𝑗(𝜃𝜃),𝑦𝑦𝑚𝑚(𝑦𝑦),𝑥𝑥𝑘𝑘(𝑥𝑥)� − 𝔼𝔼 �𝐹𝐹�𝑁𝑁

(𝑙𝑙)�𝑡𝑡𝑗𝑗(𝜃𝜃),𝑦𝑦𝑚𝑚(𝑦𝑦), 𝑥𝑥𝑘𝑘(𝑥𝑥)���

+ 𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

sup
𝑦𝑦∈𝑆𝑆ℝ

�𝔼𝔼 �𝐹𝐹�𝑁𝑁
(𝑙𝑙)�𝑡𝑡𝑗𝑗(𝜃𝜃),𝑦𝑦𝑚𝑚(𝑦𝑦),𝑥𝑥𝑘𝑘(𝑥𝑥)�� − 𝔼𝔼�𝐹𝐹�𝑁𝑁

(𝑙𝑙)�𝑡𝑡𝑗𝑗(𝜃𝜃),𝑦𝑦, 𝑥𝑥𝑘𝑘(𝑥𝑥)���

 

+ 𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

sup
𝑦𝑦∈𝑆𝑆ℝ

�𝔼𝔼 �𝐹𝐹�𝑁𝑁
(𝑙𝑙)�𝑡𝑡𝑗𝑗(𝜃𝜃),𝑦𝑦, 𝑥𝑥𝑘𝑘(𝑥𝑥)�� − 𝔼𝔼�𝐹𝐹�𝑁𝑁

(𝑙𝑙)�𝜃𝜃,𝑦𝑦, 𝑥𝑥𝑘𝑘(𝑥𝑥)���

+ 𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

sup
𝑦𝑦∈𝑆𝑆ℝ

�𝔼𝔼 �𝐹𝐹�𝑁𝑁
(𝑙𝑙)�𝜃𝜃,𝑦𝑦, 𝑥𝑥𝑘𝑘(𝑥𝑥)�� − 𝔼𝔼�𝐹𝐹�𝑁𝑁

(𝑙𝑙)(𝜃𝜃,𝑦𝑦, 𝑥𝑥)��

≤ 𝐷𝐷1 + 𝐷𝐷2 + 𝐷𝐷3 + 𝐷𝐷4 + 𝐷𝐷5 + 𝐷𝐷6 + 𝐷𝐷7.
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• Concerning 𝐷𝐷3 and 𝐷𝐷5, by satisfying conditions (H5)-(ii) and (U6), as well as the boundedness of 𝐾𝐾, 
one obtains 

�𝐹𝐹�𝑁𝑁
(𝑙𝑙)�𝑡𝑡𝑗𝑗(𝜃𝜃),𝑦𝑦, 𝑥𝑥𝑘𝑘(𝑥𝑥)� − 𝐹𝐹�𝑁𝑁

(𝑙𝑙)�𝑡𝑡𝑗𝑗(𝜃𝜃),𝑦𝑦𝑘𝑘(𝑦𝑦), 𝑥𝑥𝑘𝑘(𝑥𝑥)�� ≤
1

𝑛𝑛𝑔𝑔𝑛𝑛𝑙𝑙 𝔼𝔼�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�
𝑠𝑠𝑢𝑢𝑝𝑝
𝑡𝑡∈𝑆𝑆ℝ

��𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖�𝑡𝑡𝑗𝑗(𝜃𝜃),𝑥𝑥𝑘𝑘(𝑥𝑥)��
𝑛𝑛

𝑖𝑖=1

+ �𝐻𝐻(𝑙𝑙)�𝑔𝑔𝑛𝑛−1(𝑦𝑦 − 𝑌𝑌𝑖𝑖)�𝛿𝛿𝑖𝑖𝐻𝐻(𝑙𝑙) �𝑔𝑔𝑛𝑛−1�𝑦𝑦𝑚𝑚(𝑦𝑦) − 𝑌𝑌𝑖𝑖���

≤ sup𝐶𝐶
𝑦𝑦∈𝑆𝑆ℝ

�𝑦𝑦 − 𝑦𝑦𝑚𝑚(𝑦𝑦)�
𝑔𝑔𝑛𝑛𝑙𝑙+1

�
∑ �𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖�𝑡𝑡𝑗𝑗(𝜃𝜃), 𝑥𝑥𝑘𝑘(𝑥𝑥)��𝑛𝑛
𝑖𝑖=1

𝑛𝑛𝔼𝔼�𝐾𝐾1�𝑡𝑡𝑗𝑗(𝜃𝜃), 𝑥𝑥𝑘𝑘(𝑥𝑥)��
� ≤

𝐶𝐶𝑙𝑙𝑛𝑛
𝑔𝑔𝑛𝑛𝑙𝑙+1𝜙𝜙(ℎ𝑛𝑛)

= 𝒪𝒪 �
𝑙𝑙𝑛𝑛

𝑔𝑔𝑛𝑛𝑙𝑙+1𝜙𝜙(ℎ𝑛𝑛)
� .

 

Then, the fact that lim
𝑛𝑛→∞

𝑛𝑛𝜈𝜈𝑔𝑔𝑛𝑛 = ∞, and choosing  𝑙𝑙𝑛𝑛 = 𝑛𝑛−(3𝜈𝜈+1) 2⁄ , and employing the second part of 

(U6) as 𝑛𝑛 → ∞, it follows that 

𝑙𝑙𝑛𝑛
𝑔𝑔𝑛𝑛𝑙𝑙+1𝜙𝜙(ℎ𝑛𝑛)

= 𝑙𝑙 ��
𝑙𝑙𝑙𝑙𝑔𝑔 𝑛𝑛

𝑛𝑛𝑔𝑔𝑛𝑛2𝑙𝑙𝜙𝜙(ℎ𝑛𝑛)
� ,  𝐷𝐷5 ≤ 𝐷𝐷3 = 𝒪𝒪𝑎𝑎.𝑐𝑐𝑐𝑐. ��

𝑙𝑙𝑙𝑙𝑔𝑔𝑑𝑑𝑛𝑛
𝑆𝑆ℋ𝑑𝑑𝑛𝑛

𝛩𝛩ℋ

𝑛𝑛𝑔𝑔𝑛𝑛2𝑙𝑙𝜙𝜙(ℎ𝑛𝑛)
�. 

• Concerning 𝐹𝐹4 let us consider 𝜀𝜀 = 𝜀𝜀0�
𝑙𝑙𝑐𝑐𝑙𝑙𝑑𝑑𝑛𝑛

𝑆𝑆ℋ𝑑𝑑𝑛𝑛
𝛩𝛩ℋ

𝑛𝑛𝑙𝑙𝑛𝑛2𝑙𝑙𝜙𝜙(ℎ𝑛𝑛)
. Hence 

ℙ�𝐷𝐷4 > 𝜀𝜀0�
𝑙𝑙𝑙𝑙𝑔𝑔 𝑑𝑑𝑛𝑛

𝑆𝑆ℋ𝑑𝑑𝑛𝑛
𝛩𝛩ℋ

𝑛𝑛𝑔𝑔𝑛𝑛2𝑙𝑙𝜙𝜙(ℎ𝑛𝑛)
� ≤ ℙ� max

𝑗𝑗∈�1,⋯,𝑑𝑑𝑛𝑛
𝛩𝛩ℋ�

max
𝑘𝑘∈�1,⋯,𝑑𝑑𝑛𝑛

𝑆𝑆ℋ�
max

𝑚𝑚∈{1,⋯,𝜏𝜏𝑛𝑛}
�Σ𝑖𝑖

(𝑙𝑙) − 𝔼𝔼Σ𝑖𝑖
(𝑙𝑙)� > 𝜀𝜀�

 ≤ 𝜏𝜏𝑛𝑛𝑑𝑑𝑛𝑛
𝑆𝑆ℋ𝑑𝑑𝑛𝑛

𝛩𝛩ℋ  ℙ��Σ𝑖𝑖
(𝑙𝑙) − 𝔼𝔼Σ𝑖𝑖

(𝑙𝑙)� > 𝜀𝜀�.

 

Applying Bernstein’s exponential inequality, under (H5) and (H7), to get  ∀𝑗𝑗 ≤ 𝑑𝑑𝑛𝑛
𝛩𝛩ℋ ,  

∀𝑘𝑘 ≤ 𝑑𝑑𝑛𝑛
𝑆𝑆ℋand ∀𝑚𝑚 ≤ 𝜏𝜏𝑛𝑛, 

ℙ��Σ𝑖𝑖
(𝑙𝑙) − 𝔼𝔼Σ𝑖𝑖

(𝑙𝑙)� > 𝜀𝜀� ≤ 2 �𝑑𝑑𝑛𝑛
𝑆𝑆ℋ𝑑𝑑𝑛𝑛

𝛩𝛩ℋ�
−𝐶𝐶𝜀𝜀0

2

. 

Choosing 𝜏𝜏𝑛𝑛 ≤ 𝐶𝐶𝑛𝑛(3𝜈𝜈+1) 2⁄ , one obtains: 

ℙ(𝐷𝐷4 > 𝜀𝜀) ≤ 𝐶𝐶�𝑑𝑑𝑛𝑛
𝑆𝑆ℋ𝑑𝑑𝑛𝑛

𝛩𝛩ℋ�
1−𝐶𝐶𝜀𝜀0

2

. 

Putting 𝐶𝐶𝜀𝜀02 = 𝜉𝜉 and using (U6) to obtain: 

𝐷𝐷4 = 𝒪𝒪𝑎𝑎.𝑐𝑐𝑐𝑐. ��
𝑙𝑙𝑙𝑙𝑔𝑔𝑑𝑑𝑛𝑛

𝑆𝑆ℋ𝑑𝑑𝑛𝑛
𝛩𝛩ℋ

𝑛𝑛𝑔𝑔𝑛𝑛2𝑙𝑙𝜙𝜙(ℎ𝑛𝑛)
�. (4.1) 

• Concerning 𝐷𝐷1 and 𝐷𝐷2 : 

𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝐹𝐹�𝑁𝑁
(𝑙𝑙)(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝐹𝐹�𝑁𝑁

(𝑙𝑙)�𝜃𝜃,𝑦𝑦, 𝑥𝑥𝑘𝑘(𝑥𝑥)�� ≤

+
1

𝑛𝑛𝑔𝑔𝑛𝑛𝑙𝑙 𝔼𝔼�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�
𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

sup
𝑦𝑦∈𝑆𝑆ℝ

��𝛿𝛿𝑖𝑖 �𝐾𝐾𝑖𝑖(𝜃𝜃, 𝑥𝑥) − 𝐾𝐾𝑖𝑖�𝜃𝜃, 𝑥𝑥𝑘𝑘(𝑥𝑥)��� �𝐻𝐻𝑖𝑖
(𝑙𝑙)(y)�

𝑛𝑛

𝑖𝑖=1

≤
1

𝑛𝑛𝑔𝑔𝑛𝑛𝑙𝑙 𝜙𝜙(ℎ𝑛𝑛)
sup
𝜃𝜃∈Θℋ

sup
𝑥𝑥∈𝑆𝑆ℋ

��Ψ𝑖𝑖(𝜃𝜃, 𝑥𝑥) −Ψ𝑖𝑖�𝜃𝜃, 𝑥𝑥𝑘𝑘(𝑥𝑥)��
𝑛𝑛

𝑖𝑖=1

 



Single Functional Index Quantile Regression for Functional Data…  17 
 

≤
1

𝑔𝑔𝑛𝑛𝑙𝑙 𝜙𝜙(ℎ𝑛𝑛)
sup
𝜃𝜃∈Θℋ

sup
𝑥𝑥∈𝑆𝑆ℋ

1
𝑛𝑛
�1𝐵𝐵𝜃𝜃(𝑥𝑥,ℎ)∪𝐵𝐵𝜃𝜃(𝑥𝑥𝑘𝑘(𝑥𝑥),ℎ)(𝑋𝑋𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

≤
𝐶𝐶
𝑔𝑔𝑛𝑛𝑙𝑙

sup
𝜃𝜃∈Θℋ

sup
𝑥𝑥∈𝑆𝑆ℋ

1
𝑛𝑛
�Υ𝑖𝑖(𝜃𝜃, 𝑥𝑥)
𝑛𝑛

𝑖𝑖=1

.

 

Therefore, similarly to the arguments for (4.1), one can obtain that 

𝐷𝐷1 = 𝒪𝒪𝑎𝑎.𝑐𝑐𝑐𝑐. ��
𝑙𝑙𝑙𝑙𝑔𝑔𝑑𝑑𝑛𝑛

𝑆𝑆ℋ𝑑𝑑𝑛𝑛
𝛩𝛩ℋ

𝑛𝑛𝑔𝑔𝑛𝑛2𝑙𝑙𝜙𝜙(ℎ𝑛𝑛)
�. 

𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝐹𝐹�𝑁𝑁
(𝑙𝑙)�𝜃𝜃,𝑦𝑦, 𝑥𝑥𝑘𝑘(𝑥𝑥)� − 𝐹𝐹�𝑁𝑁

(𝑙𝑙)�𝑡𝑡𝑗𝑗(𝜃𝜃),𝑦𝑦, 𝑥𝑥𝑘𝑘(𝑥𝑥)�� ≤

𝑔𝑔𝑛𝑛−𝑙𝑙

𝑛𝑛𝔼𝔼�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�
𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

sup
𝑦𝑦∈𝑆𝑆ℝ

� �𝛿𝛿𝑖𝑖 �𝐾𝐾𝑖𝑖�𝜃𝜃, 𝑥𝑥𝑘𝑘(𝑥𝑥)� − 𝐾𝐾𝑖𝑖�𝑡𝑡𝑗𝑗(𝜃𝜃), 𝑥𝑥𝑘𝑘(𝑥𝑥)��� �𝐻𝐻𝑖𝑖
(𝑙𝑙)(y)�

𝑛𝑛

𝑘𝑘=1

≤
𝐶𝐶𝑔𝑔𝑛𝑛−𝑙𝑙

𝜙𝜙(ℎ𝑛𝑛)
sup
𝜃𝜃∈Θℋ

sup
𝑥𝑥∈𝑆𝑆ℋ

1
𝑛𝑛
��Ψ𝑖𝑖�𝜃𝜃, 𝑥𝑥𝑘𝑘(𝑥𝑥)� − Ψ𝑖𝑖�𝑡𝑡𝑗𝑗(𝜃𝜃), 𝑥𝑥𝑘𝑘(𝑥𝑥)��
𝑛𝑛

𝑖𝑖=1

 

≤
𝐶𝐶

𝑔𝑔𝑛𝑛𝑙𝑙 𝜙𝜙(ℎ𝑛𝑛)
sup
𝜃𝜃∈Θℋ

sup
𝑥𝑥∈𝑆𝑆ℋ

1
𝑛𝑛
�1𝐵𝐵𝜃𝜃(𝑥𝑥𝑘𝑘(𝑥𝑥),ℎ)∪𝐵𝐵𝑡𝑡𝑗𝑗(𝜃𝜃)(𝑥𝑥𝑘𝑘(𝑥𝑥),ℎ)(𝑋𝑋𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

𝐶𝐶
𝑔𝑔𝑛𝑛𝑙𝑙

sup
𝜃𝜃∈Θℋ

sup
𝑥𝑥∈𝑆𝑆ℋ

1
𝑛𝑛
�Ω𝑖𝑖(𝜃𝜃, 𝑥𝑥)
𝑛𝑛

𝑖𝑖=1

.

 

Similar to the deduction of (4.1), this results in: 

𝐷𝐷2 = 𝒪𝒪𝑎𝑎.𝑐𝑐𝑐𝑐. ��
𝑙𝑙𝑙𝑙𝑔𝑔𝑑𝑑𝑛𝑛

𝑆𝑆ℋ𝑑𝑑𝑛𝑛
𝛩𝛩ℋ

𝑛𝑛𝑔𝑔𝑛𝑛2𝑙𝑙𝜙𝜙(ℎ𝑛𝑛)
�. 

On the other hand, since 𝐷𝐷7 ≤ 𝐷𝐷1 and𝐷𝐷6 ≤ 𝐷𝐷2, it also leads to: 

𝐷𝐷6 = 𝒪𝒪𝑎𝑎.𝑐𝑐𝑐𝑐. ��
𝑙𝑙𝑙𝑙𝑔𝑔 𝑑𝑑𝑛𝑛

𝑆𝑆ℋ𝑑𝑑𝑛𝑛
𝛩𝛩ℋ

𝑛𝑛𝑔𝑔𝑛𝑛2𝑙𝑙𝜙𝜙(ℎ𝑛𝑛)
�  and 𝐷𝐷7 = 𝒪𝒪𝑎𝑎.𝑐𝑐𝑐𝑐. ��

𝑙𝑙𝑙𝑙𝑔𝑔𝑑𝑑𝑛𝑛
𝑆𝑆ℋ𝑑𝑑𝑛𝑛

𝛩𝛩ℋ

𝑛𝑛𝑔𝑔𝑛𝑛2𝑙𝑙𝜙𝜙(ℎ𝑛𝑛)
�. 

Thus the proof of Lemma 4.3 can be concluded. 

Corollary 4.1. Under hypotheses (H1)-(H2), (H5)-(H7) and (U1)-(U4):  

𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑦𝑦∈𝑆𝑆ℝ

�𝐹𝐹�(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥)� = 𝒪𝒪�ℎ𝑛𝑛
𝛼𝛼1 + 𝑔𝑔𝑛𝑛

𝛼𝛼2� + 𝒪𝒪𝑎𝑎.𝑐𝑐𝑐𝑐. ��
𝑙𝑙𝑙𝑙𝑔𝑔𝑑𝑑𝑛𝑛

𝑆𝑆ℋ𝑑𝑑𝑛𝑛
𝛩𝛩ℋ

𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙(ℎ𝑛𝑛)
�. 

Corollary 4.2. Under hypotheses of Theorem 4.1, one obtains: 

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

��̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) − 𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥)�
𝑛𝑛→∞
�⎯⎯�0,𝑎𝑎. 𝑐𝑐𝑙𝑙. 

and  

𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝜃𝜃∈Θℋ

𝑠𝑠𝑢𝑢𝑝𝑝
𝑥𝑥∈𝑆𝑆ℋ

��̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) − 𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥)� = 𝒪𝒪 ��ℎ𝑛𝑛
𝛼𝛼1 + 𝑔𝑔𝑛𝑛

𝛼𝛼2�
1
𝑙𝑙 �+ 𝒪𝒪𝑎𝑎.𝑐𝑐𝑐𝑐. ��

𝑙𝑙𝑙𝑙𝑔𝑔𝑑𝑑𝑛𝑛
𝑆𝑆ℋ𝑑𝑑𝑛𝑛

𝛩𝛩ℋ

𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙(ℎ𝑛𝑛) �

1
2𝑙𝑙
�. 
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Proof of Corollary 4.2. Clearly, the proof of this corollary can be deduced from decomposition (3.2) 
and the intermediate results (Lemma 4.1-4.3), which represent a uniform version of Proposition 3.1. 

5. Conclusion 

This paper focused on the nonparametric estimation of the conditional distribution function and 
conditional quantile in the single functional index model for independent data, when the variable of 
interest is subject to the presence of randomly missing data, involving both some (semi-parametric) 
single model structure and also some censoring process on the variables. Both the almost complete 
convergences as well as almost uniform complete convergence of the proposed estimators were 
established. The proofs were based on some standard assumptions in Functional Data Analysis (FDA). 
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Właściwości asymptotyczne estymatorów półparametrycznych 
dla kwantyla warunkowego pojedynczego wskaźnika 
funkcjonalnego z losowymi brakami danych 

Streszczenie: Głównym celem przedstawionych w artykule badań jest oszacowanie kwantyla rozkładu 
warunkowego przy użyciu podejścia półparametrycznego w obecności losowo brakujących danych, 
gdzie zmienna predykcyjna należy do przestrzeni semimetrycznej. Założono strukturę pojedynczego 
indeksu, aby połączyć zmienną objaśniającą i zmienną odpowiedzi. Wstępnie zaproponowano 
estymator jądra dla funkcji rozkładu warunkowego, zakładając, że dane są losowo wybierane z procesu 
stacjonarnego z brakującymi danymi (MAR). Nakładając pewne ogólne warunki, ustalono jednolitą, 
prawie całkowitą zgodność modelu ze współczynnikami konwergencji. 

Słowa kluczowe: funkcjonalna analiza danych, funkcjonalny proces pojedynczego indeksu, estymator 
jądra, losowe braki, estymacja nieparametryczna, prawdopodobieństwo małej kuli. 
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