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Abstract: This paper attempted using the prospect theory to explain overbidding in first price auctions. 
The standard outlook in the literature on auctions is that bidders overbid, but the probability weighting 
functions are nonlinear as in the prospect theory, so they not only tend to underweight the probabilities 
of winning the auction but also overweight, so that there are overbidders and underbidders. This paper 
proves that to some extent, non-linear weighting functions do explain overbidding the risk-neutral Nash 
equilibrium valuation (RNNE). Furthermore, coherent risk measures, such as certainty equivalent and 
translation invariance, were used to show loss aversion among bidders, and in line with the prospect 
theory, convexity was also confirmed with sub-additivity, monotonicity and with positive homogeneity. 

Keywords: cumulative prospect theory, first-price auctions, overbidding, probability weighting 
function (PWF), inverse S-shaped functions. 

1. Introduction 

The prospect theory was introduced as a critique of the expected utility theory as 
a decision-making model under risk, in a paper published in Econometrica in 1979 by 
Kahneman and Tversky entitled “Prospect Theory: An Analysis of Decision under 
Risk”. This paper made a significant contribution since it showed that people are 
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systematically violating the properties of the expected utility model, which at the time 
was the workhorse model for decision-making under uncertainty. However, the 
prospect theory has not been applied in economic theory, not because it was irrelevant 
outside the laboratory setting, but because it was hard to know how to apply it, see 
Barberis (2013). Mostly, researchers from the behavioural economics, i.e. behavioural 
finance, are involved with the application of the prospect theory. Studies in finance are 
conducted through the CAPM models of Sharpe (1964) and Lintner (1965)1, where 
investors are evaluating utility in accordance with the expected utility, stating that 
securities with “higher betas”, i.e. the returns of the securities that covary more with 
the return of the overall market. Although research by Fama, and French (2004) 
concluded that this model does not receive empirical support2, the Black (1972) 
model3 assumes no riskless asset. This version of the CAPM model4 is more robust in 
empirical testing. First, the potential shortcoming of the original CAPM model is that 
the ‘true’ market portfolio is unobservable (see: Roll, 1977). Roll (1977) also pointed 
to mean variance tautology, namely that mean-variance efficiency and the capital asset 
pricing model equation are mathematically equivalent5. Hence, this raised the question 
of whether one can do better in explaining cross-section average returns using a model 
in which investors evaluate risk in a psychologically plausible way. Barberis and 
Huang (2008) studied the asset prices in a one-period economy in which investors 
derive prospect utility from the change in the values of portfolios. The study found that 
a security whose return distribution is right tail skewed will be overpriced, relative to 
an economy with expected utility investors, and will earn a lower average return. 
Previously, papers used pricing of financial securities when investors make decisions 
according to the cumulative prospect theory (CPT) of Tversky and Kahneman (1992). 
Under the cumulative prospect theory, one uses a value function defined over gains 
and losses, concave over gains and convex over losses, and kinked in the origin, and 
using weighted probabilities. Furthermore, this study explains that overweighing the 

 
1 The Sharpe-Lintner CAPM model is given as 𝐸𝐸(𝑅𝑅𝑖𝑖) = 𝑅𝑅𝑓𝑓 + 𝛽𝛽𝑖𝑖,𝑀𝑀�𝐸𝐸(𝑅𝑅𝑀𝑀) − 𝑅𝑅𝑓𝑓�;𝛽𝛽𝑀𝑀 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑅𝑅𝑖𝑖,𝑅𝑅𝑀𝑀)

𝜎𝜎2(𝑅𝑅𝑀𝑀)
, 

where 𝛽𝛽𝑖𝑖,𝑀𝑀�𝐸𝐸(𝑅𝑅𝑀𝑀) − 𝑅𝑅𝑓𝑓� is premium per unit of beta risk, 𝐸𝐸(𝑅𝑅𝑖𝑖) is the expected return and 𝑅𝑅𝑓𝑓 is a risk 
free interest rate, see (Fama & French, 2004).  

2 An early test by Fama and MacBeth (1973), Gibbons (1982), and Stambaugh (1982), found that 
𝛽𝛽 appears to suffice in explaining expected returns and the sign on the premium on 𝛽𝛽 is +, and in the 
cross-sectional model of Fama and French (1992) where: regress 𝑅𝑅𝚤𝚤� − 𝑅𝑅𝑓𝑓��� = 𝛾𝛾 + �̂�𝛽𝑖𝑖,𝑀𝑀𝜆𝜆 + 𝑢𝑢𝑖𝑖. CAPM 
predictions in the previous model are that 𝛾𝛾 = 0 and 𝜆𝜆 > 0 by Black (1972). On the other hand, 𝜆𝜆 =
𝐸𝐸(𝑅𝑅𝑀𝑀 − 𝑅𝑅𝑓𝑓) by (Sharpe-Lintner), but the empirical estimates showed that 𝛾𝛾 was too large and 𝜆𝜆 too 
small. Later studies by Fama and French (1992), found that 𝛽𝛽 does not explain cross section average 
returns, and +𝛽𝛽 premium does not exist in the post-1963 period.  

3 According to Black (1972), 𝐸𝐸(𝑅𝑅𝑖𝑖) = 𝐸𝐸(𝑅𝑅𝑧𝑧) + 𝛽𝛽𝑖𝑖[𝐸𝐸(𝑅𝑅𝑀𝑀) − 𝐸𝐸(𝑅𝑅𝑧𝑧)], where 𝐸𝐸(𝑅𝑅𝑧𝑧) is the expected 
return on zero-beta portfolio 𝑧𝑧. Portfolio 𝑧𝑧 is defined as the portfolio that has the minimum variance of 
all portfolios uncorrelated with M. 

4 Black (1972) differed from Sharpe-Lintner in 𝐸𝐸(𝑅𝑅𝑧𝑧); in Black 𝐸𝐸(𝑅𝑅𝑀𝑀) − 𝐸𝐸(𝑅𝑅𝑧𝑧) > 0 whereas in 
Sharpe-Lintner 𝐸𝐸(𝑅𝑅𝑧𝑧) = 𝑅𝑅𝑓𝑓. Hence, in either case there is positive premium for 𝛽𝛽 . 

5 See also Pollard (2008), Mean-Variance Efficiency and the Capital Asset Pricing Model, Proof.  
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tails is a modelling device for capturing the common preference for a lottery-like, 
positively skewed wealth distribution. Kőszegi and Rabin (2006, 2007, 2009), in their 
respective papers proposed how to apply the prospect theory in economics, suggesting 
that the reference point people use to compute gains and losses are their rational 
expectations and beliefs6. In the case of finance, several authors and publications using 
different techniques to measure the skewness concluded that more positively skewed 
stocks will have lower on average returns, see: Boyer, Mitton and Vorkink (2010), 
Bali, Cakici, and Whitelaw (2011). The prospect theory implies that stocks involved 
in an offering should have lower average returns. Green and Hwang (2012), found that 
the higher the predicted skewness of an initial public offering stock, the lower its long-
term average return. An open IPO, which is a modified Dutch auction (strategically 
equivalent to a First Price Auction), based on an auction system designed by Wiliam 
Vickrey7. This auction method ranks bids from highest to lowest, then accepts the 
highest bids that allow all shares to be sold, with all winning bidders paying the same 
price, similarly to T-bills auction. One consistent outcome found in the experiments 
involving independent private value first price auctions8 is that the subjects 
consistently bid above the risk neutral Nash equilibrium (RNNE) bid, see: Dorsey and 
Razzolini (2003). For a well-known example of “misbehavior” of bidders in FPA 
auctions, see: Harrison (1989); Cox, Smith and Walker (1988). Next, the authors 
examined to what extent the prospect theory is able to explain overbidding in first price 
auctions (FPA). Research concluded that overbidding occurs when bidders are risk-
seeking when faced with a risky choice leading to losses, or risk-averse when faced 
with a risky choice leading to gains cf. Kirchkamp and Reiss (2004); Kagel and Levin 
(2002, 2016). Earlier studies explaining the overbidding with CRRA constant relative 
risk aversion include (Cox et al., 1982, 1983a, 1983b, 1984, 1985). Yet, the earlier 
literature states that risk aversion cannot be the only factor behind overbidding (cf. 
Kagel and Roth, 1992). Loss aversion was the main evidence for overbidding in 
a multidimensional reference dependent model for FPA and SPA (see: Lange, & Ratan 
2010). Some studies used the prospect theory in their explanation of overbidding in 
auctions, examples include (Goeree et al., 2002), that used subject probability 
weighting function (PWF) suggested by Prelec (1998). Ratan (2009) also used the 
same PWF, together with a multidimensional reference-dependent model. Armantier 
and Treich (2009a; 2009b) stated that any star-shaped probability weighting function 
is able to explain overbidding. I In addition, this paper proves that when overbidding 
occurs in first price auctions, the results are for symmetric and asymmetric auctions, 
and also that certainty equivalent function is convex in this case, which implies a risk-
-seeking utility function.  

 
6 For instance, the difference between consumption and derived consumption is utility, where the 

utility function exhibits loss aversion and diminishing sensitivity.  
7 W. Vickrey’s 1996 joint Nobel Prize was in large part awarded for his (1961, 1962) papers which 

developed some special cases of the Revenue Equivalence Theorem. 
8 The literature on FPA includes Lebrun (1996); Maskin and Riley (2000a); Maskin and Riley 

(forthcoming); Athey (2001); Lizzeri and Persico (2000). 
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2. The prospect theory value of a game 

Let us consider a game with two possible outcomes: 𝑥𝑥 with probability 𝑝𝑝 and 𝑦𝑦 with 
probability 1 − 𝑝𝑝, where 𝑥𝑥 ≥ 0 ≥ 𝑦𝑦. The prospect theory value of the game is  

equation 1 

𝑉𝑉 = 𝜋𝜋(𝑝𝑝)𝑢𝑢(𝑥𝑥) + 𝜋𝜋(1 − 𝑝𝑝)𝑢𝑢(𝑦𝑦) 
In prospect theory the probability of weighting 𝜋𝜋 is concave and first order convex, e.g.  

equation 2 

𝜋𝜋𝛽𝛽 =
𝑝𝑝𝛽𝛽

𝑝𝑝𝛽𝛽 + (1 − 𝑝𝑝)𝛽𝛽 

For some ∃𝛽𝛽 ∈ (0,1). A useful parametrisation of the prospect theory value 
function is power law function  

equation 3 

𝑢𝑢(𝑥𝑥) = |𝑥𝑥|𝛼𝛼  ; 𝑥𝑥 ≥ 0 

𝑢𝑢(𝑥𝑥) = −𝜆𝜆|𝑥𝑥|𝛼𝛼;𝑥𝑥 ≤ 0 

A fourfold pattern of risk aversion 𝑢𝑢 is: 
1. Risk aversion in the domain of likely gains.  
2. Risk aversion in the domain of unlikely gains.  
3. Risk seeking in the domain of likely losses.  
4. Risk seeking in the domain of unlikely losses.  
Some properties of the prospect theory value functions are: 

• They are scale invariant, i.e. ∀𝑘𝑘 > 0 
Now, let us consider two gambles (uncertain outcomes9), the second gamble being 

scaled by 𝑘𝑘 

equation 4 

𝑔𝑔 = � 𝑥𝑥 ,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑝𝑝
𝑦𝑦,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1 − 𝑝𝑝 

equation 5 

𝑘𝑘𝑔𝑔 = � 𝑘𝑘𝑥𝑥 ,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑝𝑝
𝑘𝑘𝑦𝑦,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1 − 𝑝𝑝 

and then: 

 
9 Variance of the variable or squared root of variance.std.deviation, for a continuous variable; or 

in a context of the CAPM model, the measure is called downside beta that measures downside risk (risk 
associated with losses).  
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equation 6 

𝑉𝑉𝑃𝑃𝑃𝑃(𝑘𝑘𝑔𝑔) = 𝑘𝑘𝛼𝛼𝑉𝑉𝑃𝑃𝑃𝑃(𝑔𝑔) 

If someone prefers 𝑔𝑔 to 𝑔𝑔′ then they will prefer 𝑘𝑘𝑔𝑔 to 𝑘𝑘𝑔𝑔′ for 𝑘𝑘 > 0, and if 𝑥𝑥,𝑦𝑦 ≥
0, then: 

equation 7 

𝑉𝑉(−𝑔𝑔) = −𝜆𝜆𝑉𝑉(𝑔𝑔) 

If 𝑥𝑥′,𝑦𝑦′ ≥ 0, and someone prefers −𝑔𝑔 to −𝑔𝑔′, the question that arises is of the 
robustness of the results, and the results are:  
very robust  

1. where there is loss aversion at reference point, 𝜆𝜆 > 1  
medium robust  

2. where there is convexity of 𝑢𝑢 for 𝑥𝑥 < 0 
slightly robust  

3. dependent on the underweighting or overweighting the probabilities 𝜋𝜋(𝑝𝑝) ≷ 𝑝𝑝.  
In application, often a simplified version of the PT theory is used: 

equation 8 

𝜋𝜋(𝑝𝑝) = 𝑝𝑝 

equation 9 

𝑢𝑢(𝑥𝑥) = 𝑥𝑥,𝑓𝑓𝑝𝑝𝑝𝑝 𝑥𝑥 ≥ 0 

equation 10 

𝑢𝑢(𝑥𝑥) = 𝜆𝜆𝑥𝑥 𝑓𝑓𝑝𝑝𝑝𝑝 𝑥𝑥 ≤ 0 

Now, let us consider gamble 𝜎𝜎 and −𝜎𝜎 with 50:50 chances. The question arises 
here as to what risk premium Π would agents pay to avoid small risk 𝜎𝜎. It can be proved 
that as 𝜎𝜎 → 0 this premium becomes 𝒪𝒪(𝜎𝜎2), and this is called a second order risk 
aversion. In fact, it can be shown that for twice continuously differentiable utilities 

equation 11 

Π(𝜎𝜎) ≅
𝜌𝜌
2
𝜎𝜎2  

where 𝜌𝜌 is the curvature of 𝑢𝑢 at 0 that is 𝜌𝜌 = −𝑢𝑢′′

𝑢𝑢′
. Now, let us take an agent with 

wealth 𝑥𝑥, and this agent takes the gamble if  

equation 12 

𝐵𝐵(Π) =
1
2
𝑢𝑢 (𝑥𝑥 + Π + 𝜎𝜎) +

1
2
𝑢𝑢 (𝑥𝑥 + Π − 𝜎𝜎) ≥ 𝑢𝑢(𝑥𝑥) 
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i.e. Π ≥ Π∗, where 

equation 13 

𝐵𝐵(Π∗) = 𝑢𝑢(𝑥𝑥) 
 

Now, let us assume that 𝑢𝑢 is twice differentiable and take Taylor expansion of 
𝐵𝐵(Π) for small 𝜎𝜎 and Π: 

equation 14 

𝑢𝑢 (𝑥𝑥 + Π + 𝜎𝜎) = 𝑢𝑢(𝑥𝑥) + 𝑢𝑢′(𝑥𝑥)(Π+ 𝜎𝜎) +
1
2
𝑢𝑢′′(𝑥𝑥) + (Π + 𝜎𝜎2) + 𝒪𝒪(Π + 𝜎𝜎)2 

equation 15 

𝑢𝑢 (𝑥𝑥 + Π − 𝜎𝜎) = 𝑢𝑢(𝑥𝑥) + 𝑢𝑢′(𝑥𝑥)(Π− 𝜎𝜎) +
1
2
𝑢𝑢′′(𝑥𝑥) + (Π − 𝜎𝜎2) + 𝒪𝒪(Π − 𝜎𝜎)2 

hence  

equation 16 

𝐵𝐵(Π) = 𝑢𝑢(𝑥𝑥) + 𝑢𝑢′(𝑥𝑥)Π+
1
2
𝑢𝑢′′(𝑥𝑥)[𝜎𝜎2 + Π2] + 𝒪𝒪(𝜎𝜎2 + Π2) 

Now, using the definition of 𝐵𝐵(Π∗) = 𝑢𝑢(𝑥𝑥) to get: 

equation 17 

Π∗ =
𝜌𝜌
2

[𝜎𝜎2 + Π∗2] + 𝒪𝒪(𝜎𝜎2 + Π∗2) 

and to solve: Π∗ = 𝜌𝜌
2

[𝜎𝜎2 + Π∗2] for small 𝜎𝜎, call 𝜌𝜌′ = 𝜌𝜌
2
 . First, find the roots of  

equation 18 

Π∗2 −
1
𝜌𝜌′
Π∗ + 𝜎𝜎2 = 0 

then compute the discriminant  

equation 19 

Δ =
1
𝜌𝜌′2

− 4𝜎𝜎2  

thus the roots are 

equation 20 

Π∗ =
1

2𝜌𝜌′
±

1
2
�

1
𝜌𝜌′2

− 4𝜎𝜎2�
1
2
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As when there is no risk, the risk premium should be 0, then the relevant root is  

Π∗ =
1

2𝜌𝜌′
−

1
2
�

1
𝜌𝜌′2

− 4𝜎𝜎2�
1
2
 

Then, take the Taylor expansion for small 𝜎𝜎 

equation 21 

Π∗ =
1

2𝜌𝜌′
−

1
2𝜌𝜌′

 (1 − 4𝜌𝜌′2𝜎𝜎2) 
1
2 =

1
2𝜌𝜌′

−
1

2𝜌𝜌′ �
1−

1
2

4𝜌𝜌′2𝜎𝜎2 + 𝒪𝒪(𝜎𝜎2)�

1
2

= 𝜌𝜌′𝜎𝜎2 

Now, let us remember that 𝜌𝜌′ = 𝜌𝜌
2
 , hence Π∗ = 𝜌𝜌

2
𝜎𝜎2. 

First order risk aversion of prospect theory  
Let us consider a gamble as for expected utility. One takes the gamble if Π ≥ Π∗, 

where  

equation 22 

𝜋𝜋 �1
2
�𝑢𝑢(Π∗ + 𝜎𝜎) + 𝜋𝜋(0.5)𝑢𝑢(Π∗ − 𝜎𝜎) = 0 to show that in the prospect theory, as 

𝜎𝜎 →  0, risk premium Π is of order 𝜎𝜎 when reference wealth 𝑥𝑥 = 0; this is called first 
order aversion. Now let us compute Π for 𝑢𝑢(𝑥𝑥) = 𝑥𝑥𝛼𝛼 and 𝑢𝑢 = −𝜆𝜆|𝑥𝑥|𝛼𝛼. Premium Π at 
𝑥𝑥 = 0 satisfies: 

equation 23 

0 = 𝜋𝜋 �
1
2
� (Π∗ + 𝜎𝜎)𝛼𝛼 + 𝜋𝜋(0.5)(−𝜆𝜆)|𝜎𝜎 + Π∗|𝛼𝛼   

Next, cancel 𝜋𝜋 �1
2
� and use the fact that −𝜎𝜎 + Π∗ < 0 to obtain 

equation 24 

0 = (𝜎𝜎 + Π∗)𝛼𝛼 − 𝜆𝜆(𝜎𝜎 − Π∗)𝛼𝛼 ⇔ (𝜎𝜎 + Π∗)𝛼𝛼 = 𝜆𝜆(𝜎𝜎 − Π∗)𝛼𝛼 ⇔ 𝜎𝜎 + Π∗ = 𝜆𝜆
1
𝛼𝛼[𝜎𝜎 − Π∗] 

then 

equation 25 

Π∗ =
𝜆𝜆
1
𝛼𝛼 − 1 

𝜆𝜆
1
𝛼𝛼 + 1

𝜎𝜎 = 𝑘𝑘𝜎𝜎 

where 𝑘𝑘 is equal from the second order risk aversion to  

equation 26 

Π = 𝑘𝑘𝜎𝜎2 
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Then  

equation 27 

𝑘𝑘𝜎𝜎2 = 𝜌𝜌′[𝜎𝜎2 + 𝑘𝑘2𝜎𝜎4] = 𝜌𝜌′𝜎𝜎2 + 𝒪𝒪(𝜎𝜎2) ⇒ 𝑘𝑘 = 𝜌𝜌′ + 𝒪𝒪(1) 

but empirically 𝑘𝑘 value will be  

equation 28 

𝜆𝜆 = 2,𝛼𝛼 ≃ 1, 𝑘𝑘 = 𝜆𝜆−𝛼𝛼
𝜆𝜆+𝛼𝛼

= 2−1
2+1

= 1
3
 

Note that when 𝜆𝜆 = 1 , the agent is risk neutral and the risk premium is 0. Next, 
two extensions of the prospect theory are presented. First, both outcomes are positive 
0 < 𝑦𝑦 < 𝑥𝑥 , then 

equation 29 

𝑉𝑉 = 𝑣𝑣(𝑦𝑦) + 𝜋𝜋(𝑝𝑝)�𝑣𝑣(𝑥𝑥) − 𝑣𝑣(𝑦𝑦)� 

For the negative gambles, apply the same formula and 0 > 𝑦𝑦 > 𝑥𝑥. Continuous 
gambles’ distribution for expected utility gives 

equation 30 

𝑉𝑉 = � 𝑢𝑢(𝑥𝑥)𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 
+∞

−∞
 

The prospect theory gives 

𝑉𝑉 = � 𝑢𝑢(𝑥𝑥)𝑓𝑓(𝑥𝑥)𝜋𝜋′�𝑃𝑃(𝑔𝑔 ≥ 𝑥𝑥)�𝑑𝑑𝑥𝑥 + � 𝑢𝑢(𝑥𝑥)𝑓𝑓(𝑥𝑥)𝜋𝜋′�𝑃𝑃(𝑔𝑔 ≤ 𝑥𝑥)�𝑑𝑑𝑥𝑥
0

−∞
 

+∞

0
 

Kahneman, Knetsch, and Thaler (1990) showed that in expected utility 𝑊𝑊𝑊𝑊𝑃𝑃 =
𝑊𝑊𝑊𝑊𝑊𝑊 , or willingness to pay is equal to willingness to accept10. Otherwise, as in 
Sugden (1999), and in Horowitz and McConnell (2003): 

equation 31 
𝜕𝜕𝑊𝑊𝑊𝑊𝑃𝑃
𝜕𝜕𝑦𝑦

≈ 1 −
𝑊𝑊𝑊𝑊𝑃𝑃
𝑊𝑊𝑊𝑊𝑊𝑊

 

𝜕𝜕𝜕𝜕𝑃𝑃𝑃𝑃
𝜕𝜕𝜕𝜕

 is labelled as the income effect. Horowitz and McConnell (2002) found that WTA 
is about seven times higher than WTP. Hanemann (1991), showed that the difference 
between WTP and WTA depends on the ratio of ordinary income elasticity of demand 
for the good with respect to the Allen-Uzawa elasticity of substitution between the 

 
10 Willingness to accept is the minimum amount of monetary units that а person is willing to accept 

to abandon a good or to put up with something negative, such as pollution. 
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good and a composite commodity (see: (Hicks & Allen, 1934 a,b; Uzawa, 1962)). 
The elasticity of substitution can be defined as 

equation 32 

𝜎𝜎 =

𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥1

𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥2

 

𝑓𝑓(𝑥𝑥1,𝑥𝑥2)  𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥1𝜕𝜕𝑥𝑥2

 
 

or, since 𝑥𝑥1 = 𝑥𝑥1(𝑝𝑝), . . , 𝑥𝑥𝑛𝑛 = 𝑥𝑥𝑛𝑛(𝑝𝑝), and 𝜆𝜆 = 𝜆𝜆(𝑝𝑝) = ∑ ; 𝑝𝑝𝑖𝑖𝑥𝑥𝑖𝑖(𝑝𝑝)𝑛𝑛
𝑖𝑖=1 , 𝜆𝜆(𝑝𝑝) is the unit 

cost function, then 

equation 33 

𝜎𝜎𝑖𝑖𝑖𝑖 =
𝜆𝜆 𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑝𝑝𝑖𝑖
𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖

 

and 𝜕𝜕𝑥𝑥𝑖𝑖
𝜕𝜕𝑝𝑝𝑗𝑗

= 𝜕𝜕2𝜆𝜆
𝜕𝜕𝑝𝑝𝑖𝑖𝜕𝜕𝑝𝑝𝑗𝑗

, then  

equation 34 

𝜎𝜎𝑖𝑖𝑖𝑖 =
𝜆𝜆2 𝜕𝜕2𝜆𝜆
𝜕𝜕𝑝𝑝𝑖𝑖𝜕𝜕𝑝𝑝𝑖𝑖
𝜕𝜕𝜆𝜆
𝜕𝜕𝑝𝑝𝑖𝑖

𝜕𝜕𝜆𝜆
𝜕𝜕𝑝𝑝𝑖𝑖

 

Now the aggregate Allen-Uzawa elasticity of substitution between consumption 
denoted by 𝑞𝑞 and the Hicksian composite commodity11 𝑥𝑥0 ≡ ∑𝑝𝑝𝚤𝚤�𝑥𝑥𝑖𝑖, is denoted 𝜎𝜎0. 
Following Diewert (1974), a formula that relates 𝜉𝜉, which is the income elasticity and 
𝜎𝜎0, the compensated own price elasticity for commodity consumption 𝑞𝑞 or 𝜀𝜀 =
−𝜎𝜎0(1− 𝛼𝛼) which is price demand elasticity. The expenditure function is given as 
𝑚𝑚(𝑝𝑝, 𝑞𝑞,𝑢𝑢) ≡ ∑𝑝𝑝𝑖𝑖𝑔𝑔𝑖𝑖(𝑝𝑝, 𝑞𝑞,𝑢𝑢), where agents maximise: 

equation 35 

𝑢𝑢(𝑥𝑥, 𝑞𝑞) s.t. ∑𝑝𝑝𝑖𝑖𝑥𝑥𝑖𝑖 = 𝑦𝑦 and 𝑥𝑥𝑖𝑖 = ℎ𝑖𝑖(𝑝𝑝, 𝑞𝑞,𝑦𝑦), 𝑖𝑖 = 1, … ,𝑁𝑁 

The indirect utility function is given as 𝑣𝑣(𝑝𝑝, 𝑞𝑞,𝑦𝑦) ≡ 𝑢𝑢[ℎ(𝑝𝑝, 𝑞𝑞,𝑦𝑦), 𝑞𝑞]. If 𝑞𝑞1 > 𝑞𝑞0, 
then 𝑢𝑢1 ≡ 𝑣𝑣(𝑝𝑝, 𝑞𝑞1,𝑦𝑦) ≥ 0. Also when 𝑞𝑞 = 𝑔𝑔�𝑞𝑞(𝑝𝑝,𝜋𝜋,𝑢𝑢), and inverse compensated 
demand i.e. WTP is given as 𝜋𝜋 = 𝜋𝜋�(𝑝𝑝, 𝑞𝑞,𝑢𝑢), now the two related expenditure function 
become 

 
11 Hicks' Composite Commodity Theorem states that “if the prices of a group of goods change in 

the same proportion, that group of goods behaves just as if it were a single commodity”, or “A set of 
goods whose relative prices do not change, so that they can be treated as a single commodity”. 
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equation 36 

𝑚𝑚(𝑝𝑝, 𝑞𝑞,𝑢𝑢) ≡ 𝑚𝑚� [𝑝𝑝,𝜋𝜋�(𝑝𝑝, 𝑞𝑞, 𝑢𝑢)] − 𝜋𝜋�(𝑝𝑝, 𝑞𝑞,𝑢𝑢) ∙ 𝑞𝑞 ⇒ 𝑚𝑚(𝑝𝑝, 𝑞𝑞,𝑢𝑢) ≡ −𝜋𝜋�(𝑝𝑝, 𝑞𝑞,𝑢𝑢) 

so no compensating (CV)12 and equivalent (EV)13 variations (see Hicks (1939) for 
price changes) are given as: 

equation 37 

𝐶𝐶𝑉𝑉 = ∫ 𝜋𝜋�(𝑝𝑝, 𝑞𝑞,𝑢𝑢0)𝑞𝑞1
𝑞𝑞0

𝑑𝑑𝑞𝑞 ;  𝐸𝐸𝑉𝑉 = ∫ 𝜋𝜋�(𝑝𝑝, 𝑞𝑞, 𝑢𝑢1)𝑞𝑞1
𝑞𝑞0

𝑑𝑑𝑞𝑞. 

Now 𝜉𝜉 = 𝜕𝜕 ln𝜋𝜋�(𝑝𝑝,𝑞𝑞,𝑢𝑢)
𝜕𝜕𝜕𝜕𝑛𝑛𝜕𝜕

 is the income elasticity of ln𝜋𝜋�(𝑝𝑝, 𝑞𝑞,𝑢𝑢), and by implicit 

differentiation of 𝑞𝑞 = ℎ�𝑞𝑞(𝑝𝑝,𝜋𝜋𝑦𝑦 + 𝜋𝜋𝑞𝑞) one obtains  

equation 38 

𝜕𝜕𝜋𝜋�(𝑝𝑝, 𝑞𝑞,𝑢𝑢)
𝜕𝜕𝑦𝑦

= −
ℎ�𝜕𝜕
𝑞𝑞 (𝑝𝑝,𝜋𝜋,𝑦𝑦 + 𝜋𝜋𝑞𝑞)

ℎ�𝜋𝜋
𝑞𝑞  (𝑝𝑝,𝜋𝜋,𝑦𝑦 + 𝜋𝜋𝑞𝑞) + 𝑞𝑞ℎ�𝜕𝜕

𝑞𝑞(𝑝𝑝,𝜋𝜋,𝑦𝑦 + 𝜋𝜋𝑞𝑞)
 

Hence, the previous expression can be rewritten as 

equation 39 

𝜕𝜕𝜋𝜋�(𝑝𝑝, 𝑞𝑞,𝑢𝑢)
𝜕𝜕𝑦𝑦

= −
ℎ�𝜕𝜕
𝑞𝑞 (𝑝𝑝,𝜋𝜋,𝑦𝑦 + 𝜋𝜋𝑞𝑞)

𝑔𝑔�𝜋𝜋
𝑞𝑞[𝑝𝑝,𝜋𝜋, 𝑣𝑣(𝑝𝑝, 𝑞𝑞,𝑦𝑦)]

 

This expression 𝑔𝑔�𝜋𝜋
𝑞𝑞[𝑝𝑝,𝜋𝜋, 𝑣𝑣(𝑝𝑝, 𝑞𝑞,𝑦𝑦)] < 0, so that the whole expression becomes 

positive. If this is converted into the elasticity form, it will become 

equation 40 

𝜉𝜉 =
𝜂𝜂(1 − 𝛼𝛼)

𝜀𝜀
 

In the previous expression 𝜂𝜂 income elasticity of the direct ordinary demand is 

equation 41 

𝜂𝜂 ≡
(𝑦𝑦 + 𝜋𝜋𝑞𝑞)ℎ�𝜕𝜕

𝑞𝑞 (𝑝𝑝,𝜋𝜋,𝑦𝑦 + 𝜋𝜋𝑞𝑞)
ℎ�𝑞𝑞 (𝑝𝑝,𝜋𝜋,𝑦𝑦 + 𝜋𝜋𝑞𝑞)

 

and the budget share 𝛼𝛼 of consumption 𝑞𝑞 to adjusted income  

 

 

 
12 𝐶𝐶𝑉𝑉 = 𝑤𝑤 − 𝑒𝑒(𝑝𝑝1,𝑢𝑢0) , where 𝑤𝑤 initial wealth is 𝑤𝑤 = 𝑝𝑝0,𝑢𝑢0. 
13 𝐸𝐸𝑉𝑉 = 𝑒𝑒(𝑝𝑝0,𝑢𝑢1) −𝑤𝑤, where 𝑤𝑤 = 𝑒𝑒(𝑝𝑝1,𝑢𝑢1). 
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equation 42 

𝛼𝛼 ≡
𝜋𝜋 ℎ�𝑞𝑞 (𝑝𝑝,𝜋𝜋,𝑦𝑦 + 𝜋𝜋𝑞𝑞) 

𝑦𝑦 + 𝜋𝜋𝑞𝑞
 

thus the own price elasticity of the compensated demand function for 𝑞𝑞 is: 

equation 43 

𝜀𝜀 =
𝜋𝜋𝑔𝑔�𝜋𝜋

𝑞𝑞[𝑝𝑝,𝜋𝜋, 𝑣𝑣(𝑝𝑝, 𝑞𝑞,𝑦𝑦)]
𝑔𝑔�𝑞𝑞[𝑝𝑝,𝜋𝜋, 𝑣𝑣(𝑝𝑝, 𝑞𝑞,𝑦𝑦)]  

As previously it was known that 𝜀𝜀 = −𝜎𝜎0(1− 𝛼𝛼), 𝜉𝜉 = 𝜂𝜂(1−𝛼𝛼)
𝜀𝜀

 can be written 
as 𝜉𝜉 = 𝜂𝜂

𝜎𝜎0
. Hence, the difference between CV and EV (compensating and equivalent 

variation) depends not only on income effects 𝜂𝜂 but also on substitution effects 𝜎𝜎0. 
Now, assume some quantity Ⅎ  

equation 44 

𝔸𝔸 = � 𝜋𝜋�(𝑝𝑝, 𝑞𝑞,𝑦𝑦)𝑑𝑑𝑞𝑞
𝑞𝑞1

𝑞𝑞0
 

and propose that 𝐶𝐶𝑉𝑉 = 𝐸𝐸𝑉𝑉 = 𝔸𝔸 so that  

equation 45 

𝐶𝐶𝑉𝑉 = � 𝜋𝜋�(𝑝𝑝, 𝑞𝑞,𝑢𝑢0)
𝑞𝑞1

𝑞𝑞0
𝑑𝑑𝑞𝑞 =  𝐸𝐸𝑉𝑉 = � 𝜋𝜋�(𝑝𝑝, 𝑞𝑞,𝑢𝑢1)

𝑞𝑞1

𝑞𝑞0
𝑑𝑑𝑞𝑞 = 𝔸𝔸 = � 𝜋𝜋�(𝑝𝑝, 𝑞𝑞,𝑦𝑦)𝑑𝑑𝑞𝑞

𝑞𝑞1

𝑞𝑞0
 

then 𝐶𝐶𝑉𝑉 =  𝐸𝐸𝑉𝑉 = 𝔸𝔸 = 0. This is the case when 𝜂𝜂 = 0 and 𝜎𝜎0 = ∞, so that 
 𝜉𝜉 = 𝜂𝜂

𝜎𝜎0
= 0 and there would be no substantial difference between CV and EV. 

However, if 𝜎𝜎0 → 0 then if there are very few substitute products of 𝑞𝑞 in 𝑥𝑥 this 
generates values 𝜉𝜉 → ∞. Another association here is  

equation 46  

𝑉𝑉 = 𝔸𝔸 − 𝜆𝜆𝑥𝑥 ;𝔸𝔸 − 𝜆𝜆𝑥𝑥 ≥ 0  

and 𝑊𝑊𝑊𝑊𝑃𝑃 = 𝔸𝔸
𝜆𝜆
 , or 

equation 47 

𝑊𝑊𝑊𝑊𝑃𝑃 =
∫ 𝜋𝜋�(𝑝𝑝, 𝑞𝑞, 𝑦𝑦)𝑑𝑑𝑞𝑞𝑞𝑞1
𝑞𝑞0

𝜆𝜆
; 𝑖𝑖𝑓𝑓 𝜆𝜆 = 1 ⇒𝐖𝐖𝐖𝐖𝐖𝐖 = 𝐖𝐖𝐖𝐖𝐖𝐖  

Contributions in the literature include Knez, Smith and Williams (1985), who 
argued that the difference between buying and selling prices can be attributed by the 
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thoughtless application of normally sensible bargaining habits, namely understanding 
one’s WTP and overstating the minimum acceptable price at which one would like to 
sell (WTA). Coursey, Hovis and Schultze (1987), stated that the discrepancy between 
WTP and WTA diminished with the experience of the market setting14. 

2.1. Risk seeking  

Let us take stock market return function as 𝑅𝑅 = 𝜇𝜇 + 𝜎𝜎𝑛𝑛 ,where 𝑛𝑛 ∼ 𝑁𝑁(0,1) is a return 
of the ‘gambles’ or actions with uncertain outcomes. Investors invest in proportion 𝜃𝜃 
in stock and with proportion 1 − 𝜃𝜃 in a riskless bond with return 0. Total return is then 

equation 48 

𝜃𝜃𝑅𝑅 + (1 − 𝜃𝜃)0 = 𝜃𝜃(𝜇𝜇 + 𝜎𝜎𝑛𝑛) 

Prospect 𝜋𝜋(𝑡𝑡) = 𝑝𝑝 is given as 

equation 49 

𝑉𝑉 = � 𝑢𝑢�𝜃𝜃(𝜇𝜇 + 𝜎𝜎𝑛𝑛)�𝑓𝑓(𝑛𝑛)𝑑𝑑𝑛𝑛
+∞

−∞
 

Since 𝑢𝑢 = 𝑥𝑥𝛼𝛼 for positive and 𝑢𝑢 = −𝜆𝜆|𝑥𝑥|𝛼𝛼, using the homotheticity15 one obtains: 

equation 50 

𝑉𝑉 = � |𝜃𝜃|𝛼𝛼𝑢𝑢(𝜇𝜇 + 𝜎𝜎𝑛𝑛)𝑓𝑓(𝑛𝑛)𝑑𝑑𝑛𝑛 =
+∞

−∞
 |𝜃𝜃|𝛼𝛼 � 𝑢𝑢(𝜇𝜇 + 𝜎𝜎𝑛𝑛)𝑓𝑓(𝑛𝑛)𝑑𝑑𝑛𝑛

+∞

−∞
 

Thus, from previous optimal 𝜃𝜃 = [0,∞] ,depending on the sign of the last integral. 
This is a problem because one does not have a concave function, and without concavity 
it is easy to have those instant solutions. One solution here is that 𝑉𝑉𝐸𝐸 + 𝑉𝑉𝑃𝑃𝑃𝑃 or the 
expected utility value function added up with the prospect theory value function. Now 
if one implicitly takes reference point 𝑅𝑅𝑃𝑃 to be the wealth at 𝑡𝑡 = 0, then the gamble is 
𝑊𝑊0 + 𝑔𝑔: 

equation 51 

𝑉𝑉𝑃𝑃𝑃𝑃 = 𝑉𝑉𝑃𝑃𝑃𝑃(𝑊𝑊0 + 𝑔𝑔 − 𝑅𝑅𝑡𝑡) 

Barberis, Huang and Santos (2001) also drew on the prospect theory and proposed 
a new asset pricing framework that is derived in part by the traditional consumption-
based approach (see Lucas, 1978), but also incorporated the prospect theory of 

 
14 For a further review on the reasons behind the differences between WTP and WTA see  

(Kahneman, Knetsch & Thaler, 1991). 
15 Definition: function 𝑣𝑣:𝑅𝑅𝑚𝑚 → 𝑅𝑅 is called homothetic if it is a monotonic transformation of 

a homogenous function, that is there exists a strictly increasing function 𝑔𝑔:𝑅𝑅 → 𝑅𝑅 and a homogenous 
function 𝑢𝑢:𝑅𝑅𝑛𝑛 → 𝑅𝑅 such as 𝑣𝑣 = 𝑔𝑔 ∘ 𝑢𝑢 as a composition of functions.  
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Kahneman and Tversky (1979), and insights by Thaler and Johnson (1991). Now, 
welfare is hard because it depends on the time frame. Let us take the integrated and 
separated prospect value functions: 

equation 52 

𝑉𝑉𝐼𝐼 = 𝑉𝑉𝑃𝑃𝑃𝑃(∑𝑔𝑔𝑖𝑖) ; 𝑉𝑉𝑆𝑆 = ∑𝑉𝑉𝑃𝑃𝑃𝑃(𝑔𝑔𝑖𝑖) 

The costs of business cycles are given as 𝑐𝑐𝑃𝑃 = 𝑐𝑐 + 𝜀𝜀𝑃𝑃,where 𝑐𝑐 is average monthly 
consumption, with normal iid 𝜀𝜀𝑃𝑃 with 𝐸𝐸𝜀𝜀𝑃𝑃 = 0, if one takes 𝑅𝑅𝑃𝑃 = 𝑐𝑐 = 0. With the 
prospect value integrated over one year and the segregated one given as  

equation 53 

𝑉𝑉𝐼𝐼 = 𝑉𝑉𝑃𝑃𝑃𝑃(∑𝜀𝜀𝑃𝑃) = 𝑉𝑉𝑃𝑃𝑃𝑃 �12
1
2𝜎𝜎𝜀𝜀𝑛𝑛1� ;𝑉𝑉𝑆𝑆 = 12𝜎𝜎𝜀𝜀𝛼𝛼𝑉𝑉𝑃𝑃𝑃𝑃(𝑛𝑛) 

In the expected utility, welfare is defined as 𝑉𝑉 = 𝐸𝐸𝑢𝑢(𝑐𝑐 + 𝜀𝜀𝑃𝑃), measure of welfare 
loss due to business cycle is imbedded in 𝜀𝜀𝑃𝑃 by fraction 𝜆𝜆 of the consumption that 
people would accept to give up in order to avoid consumption variability, and 𝜆𝜆 solves: 

equation 54 

𝑉𝑉 =  𝐸𝐸𝑢𝑢 (𝑐𝑐 +  𝜀𝜀𝑃𝑃)  =  𝑢𝑢 �(1 −  𝜆𝜆)𝑐𝑐� 

𝑢𝑢(𝑐𝑐𝑃𝑃) = 𝑐𝑐1−𝛾𝛾

1−𝛾𝛾
 for a positive 𝛾𝛾 ≠ 1, and to show that 𝜆𝜆 = 𝛾𝛾

2
𝜎𝜎2 = 2𝛾𝛾 ∙ 10−4. If 𝛾𝛾 ≃ 1, 

then consumers in accordance with the prospect theory value more the stability of 
consumption around the reference point where they are first order risk averse, and their 
risk aversion depends on their horizon.  

2.2. Cumulative prospect theory  

In 1992, Tversky and Kahneman proposed a new theory known as the cumulative 
prospect theory. The prospect similar to the prospect theory is denoted by (𝑥𝑥,𝑝𝑝) where 
𝑥𝑥-are the outcomes of the prospect and 𝑝𝑝 are their respective probabilities. 
The reference point is defined as 𝑥𝑥0 = 0, and all other outcomes are defined in terms 
of the reference point. A prospect with 𝑛𝑛 + 𝑚𝑚 + 1 outcomes is given by 
(𝑥𝑥−𝑚𝑚,𝑝𝑝−𝑚𝑚; … … ; . 𝑥𝑥𝑚𝑚;𝑝𝑝𝑚𝑚), where 𝑛𝑛,𝑚𝑚 ≥ 0 , and 𝑥𝑥−𝑚𝑚 ≤ ⋯ . .≤ 𝑥𝑥𝑚𝑚. Now, to denote 
a prospect with 𝑓𝑓 and 𝑓𝑓+, which is the positive part of the prospect (𝑥𝑥1,𝑝𝑝1, … , 𝑥𝑥𝑛𝑛,𝑝𝑝𝑛𝑛), 
and 𝑓𝑓− is the non-positive part of the prospect (𝑥𝑥−𝑚𝑚,𝑝𝑝−𝑚𝑚, … . , 𝑥𝑥0,𝑝𝑝0), then the value 
of the prospect is given as 

equation 55 

𝑉𝑉(𝑥𝑥,𝑝𝑝) = 𝑉𝑉(𝑓𝑓) = 𝑉𝑉−(𝑓𝑓−)𝑉𝑉+(𝑓𝑓+) 
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which is separated in terms of gains and losses. If all of the outcomes in the prospect 
are positive, then 𝑉𝑉(𝑓𝑓) = 𝑉𝑉+(𝑓𝑓+), and if all the outcomes are negative, then 𝑉𝑉(𝑓𝑓) =
𝑉𝑉−(𝑓𝑓−). The values of the positive and negative outcomes are given as: 

equation 56 

𝑉𝑉+(𝑓𝑓+) = �𝜋𝜋𝑖𝑖+𝑐𝑐(𝑥𝑥𝑖𝑖);
𝑛𝑛

𝑖𝑖=1

𝑉𝑉−(𝑓𝑓−) = �𝜋𝜋𝑖𝑖−𝑐𝑐(𝑥𝑥𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 

It is assumed that there exists a strictly increasing value function that satisfies 𝑣𝑣: 𝑥𝑥 →
ℝ, satisfying 𝑣𝑣(𝑥𝑥0) = 𝑣𝑣(0) = 0 and 𝜋𝜋+(𝑓𝑓+) = (𝜋𝜋1+, … . ,𝜋𝜋𝑛𝑛+), and 𝜋𝜋−(𝑓𝑓−) =
(𝜋𝜋−𝑚𝑚− , … . ,0), the decision weights or the probabilistic distortions for gains are given as: 

equation 57 

𝜋𝜋𝑛𝑛+ = 𝑤𝑤+(𝑝𝑝𝑛𝑛);𝜋𝜋𝑖𝑖+ = 𝑤𝑤+(𝑝𝑝𝑖𝑖 +⋯+ 𝑝𝑝𝑛𝑛) −𝑤𝑤+(𝑝𝑝𝑖𝑖+1 + ⋯+ 𝑝𝑝𝑛𝑛), 

∀𝑖𝑖: (0 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1) = 𝑤𝑤+ ��𝑝𝑝𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� − 𝑤𝑤+ � � 𝑝𝑝𝑖𝑖  
𝑛𝑛

𝑖𝑖=𝑖𝑖+1

� 

Similarly, the decision weights for losses are given as: 

𝜋𝜋𝑛𝑛− = 𝑤𝑤−(𝑝𝑝−𝑚𝑚);𝜋𝜋𝑖𝑖− = 𝑤𝑤−+(𝑝𝑝−𝑚𝑚 + ⋯+ 𝑝𝑝𝑛𝑛𝑖𝑖) − 

𝑤𝑤−(𝑝𝑝−𝑚𝑚 + ⋯+ 𝑝𝑝𝑖𝑖−1),∀𝑖𝑖: (1 −𝑚𝑚 ≤ 𝑖𝑖 ≤ 0) = 𝑤𝑤− � � 𝑝𝑝𝑖𝑖

𝑖𝑖

𝑖𝑖=−𝑚𝑚

� − 𝑤𝑤−� � 𝑝𝑝𝑖𝑖  
𝑖𝑖−1

𝑖𝑖=−𝑚𝑚

� 

where 𝑤𝑤+(0) = 𝑤𝑤−(0) = 0 and 𝑤𝑤+(1) = 𝑤𝑤−(1) = 1, because if something is 
impossible it should not impact on individual preferences, and when something is 
certain to happen, then the effect should be the value that the outcome is given. Hence, 
𝜋𝜋𝑖𝑖 are decision weights or probability distortion functions, and 𝑤𝑤+,𝑤𝑤− are the 
decision weighting functions. Therefore, now the value of a prospect is given as: 

equation 58 

𝑉𝑉(𝑥𝑥,𝑝𝑝) = 𝑤𝑤(𝑝𝑝−𝑚𝑚)𝑣𝑣(𝑥𝑥−𝑚𝑚) + � �𝑤𝑤−� � 𝑝𝑝𝑖𝑖

𝑖𝑖

𝑖𝑖=−𝑚𝑚

� − 𝑤𝑤− � � 𝑝𝑝𝑖𝑖

𝑖𝑖−1

𝑖𝑖=−𝑚𝑚

��
0

𝑖𝑖=−𝑚𝑚+1

𝑣𝑣(𝑥𝑥𝑖𝑖)

+ 𝑤𝑤(𝑝𝑝𝑛𝑛)𝑣𝑣(𝑥𝑥𝑛𝑛) + ��𝑤𝑤+� � 𝑝𝑝𝑖𝑖

𝑛𝑛

𝑖𝑖=−𝑚𝑚

� − 𝑤𝑤+ � � 𝑝𝑝𝑖𝑖

𝑛𝑛

𝑖𝑖=−𝑚𝑚

�� 𝑣𝑣(𝑥𝑥𝑖𝑖)
𝑛𝑛−1

𝑖𝑖=1

 

Prospect (𝑥𝑥,𝑝𝑝)is more preferred than (𝑦𝑦, 𝑞𝑞) so that 𝑉𝑉(𝑥𝑥,𝑝𝑝) > 𝑉𝑉(𝑦𝑦, 𝑞𝑞) and is 
indifferent when 𝑉𝑉(𝑥𝑥,𝑝𝑝) = 𝑉𝑉(𝑦𝑦, 𝑞𝑞). Thus, for decisions under risk one has: 
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equation 59 

𝑉𝑉 = 𝑉𝑉+(𝑓𝑓+) + 𝑉𝑉−(𝑓𝑓−) = � 𝜋𝜋𝑖𝑖−𝑣𝑣(𝑥𝑥𝑖𝑖) + �𝜋𝜋𝑖𝑖+𝑣𝑣(𝑥𝑥𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

0

𝑖𝑖=−𝑚𝑚

 

weighting functions for gains 𝑤𝑤+ and losses 𝑤𝑤− can be defined as mapping that assign 
event 𝑊𝑊𝑖𝑖 to a space denoted as 𝑆𝑆 ,as a number between 0 and 1. The previous satisfy 
𝑊𝑊−(∅) =  𝑊𝑊+(∅) = 0 and 𝑊𝑊+(𝑆𝑆) = 𝑊𝑊−(𝑆𝑆) = 1 , and 𝑊𝑊+(𝑊𝑊𝑖𝑖) ≤ 𝑊𝑊+�𝑊𝑊𝑖𝑖�; 
𝑊𝑊−(𝑊𝑊𝑖𝑖) ≤ 𝑊𝑊−�𝑊𝑊𝑖𝑖�;  ∃𝑊𝑊𝑖𝑖𝑖𝑖: 𝑊𝑊𝑖𝑖 ⊃ 𝑊𝑊𝑖𝑖 where 

1. 𝜋𝜋𝑛𝑛+ = 𝑊𝑊+(𝑊𝑊𝑛𝑛) 
2. 𝜋𝜋𝑖𝑖+ = 𝑊𝑊+(𝑊𝑊𝑖𝑖 ∪ 𝑊𝑊𝑖𝑖+1 ∪ … .∪ 𝑊𝑊𝑛𝑛) −𝑊𝑊+(𝑊𝑊𝑖𝑖+1 ∪ 𝑊𝑊𝑛𝑛),∀𝑖𝑖: 0 ≤ 𝑖𝑖 ≤ (𝑛𝑛 − 1) 
3. 𝜋𝜋−𝑚𝑚− = 𝑊𝑊−(𝑊𝑊−𝑚𝑚) 
4. 𝜋𝜋𝑖𝑖− = 𝑊𝑊−(𝑊𝑊−𝑚𝑚 ∪ 𝑊𝑊𝑖𝑖+1 ∪ … .∪ 𝑊𝑊𝑖𝑖) −𝑊𝑊−(𝑊𝑊−𝑚𝑚 ∪ 𝑊𝑊𝑖𝑖−1),∀: (1 −𝑚𝑚) ≤ 𝑖𝑖 ≤ 0. 
The decision weighting functions 𝑊𝑊+ and 𝑊𝑊− are defined by the previously 

mentioned properties above, but they are not directly observable (see: (Wakker &  
Tversky, 1993)). Therefore, a two-stage decision process is assumed, following: 
Tversky and Fox (1995); Fox et al. (1996); Kilka and Weber (2001). Fox and Tversky 
(1998) proposed specifying the weighing function by a two-stage approach: 

equation 60 
𝑊𝑊(𝑊𝑊𝑖𝑖) = 𝑤𝑤𝑅𝑅�𝑞𝑞(𝑊𝑊𝑖𝑖)� 

where 𝑊𝑊 is a weighting function, 𝑞𝑞 are probability judgments following the support 
theory (see Tversky and Koehler (1994)), 𝑊𝑊𝑖𝑖 is the event considered, and 𝑤𝑤𝑅𝑅 is the 
probability weighting function under risk. Wakker (2001) gave a formal justification 
for this decomposition of the weighting function. The axiomisation of the cumulative 
prospect theory (CPT) was presented in (Wakker & Tversky, 1993; Chateauneuf & 
Wakker, 1999). The value function exhibits the same properties as fin the prospect 
theory, i.e. reference dependence, diminishing sensitivity, and loss aversion. Hence, 
𝑣𝑣(𝑥𝑥) is concave above the reference point𝑣𝑣′′ ≤ 0; 𝑥𝑥 ≥ 0, and convex above the 
reference point 𝑣𝑣′′ ≥ 0; 𝑥𝑥 ≤ 0. The previous reflects diminishing sensitivity, which 
means the impact of changes in the domain of gains and losses diminishes when the 
distance from the reference point increases. The value function is steeper for losses 
than for gains, i.e. 𝑣𝑣′(𝑥𝑥) < 𝑣𝑣′(−𝑥𝑥); 𝑥𝑥 ≥ 0, since losses persist longer than gains, there 
is also extensive experimental evidence that losses have greater impact on preferences 
than gains (cf. Tversky & Kahneman, 1991). The parametric form of the value function 
proposed by Tversky and Kahneman (1992) is 

equation 61 

𝑣𝑣(𝑥𝑥) = �
𝑥𝑥𝛼𝛼  𝑖𝑖𝑓𝑓 𝑥𝑥 ≥ 0

−𝜆𝜆(−𝑥𝑥)−𝛽𝛽 𝑖𝑖𝑓𝑓 𝑥𝑥 ≤ 0 
  

The decision-weighting function takes cumulative probabilities and weights them 
nonlinearly. This means that a change in probability from 0.1 to 0 and from 0.9 to 1 
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has more influence than a change in the probability from 0.4 to 0.5. Small probabilities 
tend to be overweighted, and moderate to high probabilities tend to be underweighted. 
This give rise to an S-shaped function concave near 0, and convex near 1 (inverse 
S-shaped). Function 𝑤𝑤(𝑝𝑝) exhibits subadditivity16 if ∃𝜖𝜖1;∃𝜖𝜖2, such that 

equation 62 

�𝑤𝑤
(𝑞𝑞) ≤ 𝑤𝑤(𝑝𝑝 + 𝑞𝑞) −𝑤𝑤(𝑝𝑝);∀(𝑝𝑝 + 𝑞𝑞):𝑝𝑝 + 𝑞𝑞 ≤ 1 − 𝜖𝜖1

1 −𝑤𝑤(1 − 𝑞𝑞) ≥ 𝑤𝑤(𝑝𝑝 + 𝑞𝑞) −𝑤𝑤(𝑝𝑝),∀𝑝𝑝:𝑝𝑝 ≥ 𝜖𝜖2
 

The following two equations give the parametric form proposed by Tversky and 
Kahneman (1992) 

equation 63 

𝑤𝑤+(𝑝𝑝) =
𝑝𝑝𝛾𝛾

(𝑝𝑝𝛾𝛾 + (1 − 𝑝𝑝)𝛾𝛾)
1
𝛾𝛾

;𝑤𝑤−(𝑝𝑝) =
𝑝𝑝𝛿𝛿

(𝑝𝑝𝛿𝛿 + (1 − 𝑝𝑝)𝛿𝛿)
1
𝛿𝛿
 

The value function where loss aversion parameter 𝜆𝜆 is given as 

equation 64 

𝑣𝑣(𝑥𝑥) = �
𝑓𝑓(𝑥𝑥) 𝑖𝑖𝑓𝑓 𝑥𝑥 > 0;

0 𝑖𝑖𝑓𝑓 𝑥𝑥 = 0;
𝜆𝜆 ∙ 𝑔𝑔(𝑥𝑥) 𝑖𝑖𝑓𝑓 𝑥𝑥 < 0; 

 

where 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) are defined as follows: 

equation 65 

𝑓𝑓(𝑥𝑥) = �
𝑥𝑥𝛼𝛼  𝑖𝑖𝑓𝑓 𝛼𝛼 > 0 

ln(𝑥𝑥)  𝑖𝑖𝑓𝑓 𝛼𝛼 = 0
1 − (1 + 𝑥𝑥)𝛼𝛼  𝑖𝑖𝑓𝑓 𝛼𝛼 < 0 

;𝑔𝑔(𝑥𝑥) = �
−(𝑥𝑥)−𝛽𝛽 𝑖𝑖𝑓𝑓 𝛽𝛽 > 0 
− ln(−𝑥𝑥)  𝑖𝑖𝑓𝑓 𝛽𝛽 = 0 

(1 − 𝑥𝑥)−𝛽𝛽 − 1 𝑖𝑖𝑓𝑓 𝛽𝛽 < 0 
 

Another parametric form17 which serves as a weighing function was proposed by 
Gonzalez and Wu (1999)  

equation 66 

𝑤𝑤(𝑝𝑝) =
𝜂𝜂𝑝𝑝𝛾𝛾

𝜂𝜂𝑝𝑝𝛾𝛾 + (1 − 𝑝𝑝)𝛾𝛾 

The curvature parameter is the previous function 𝛾𝛾 which represents the degree 
of diminishing sensitivity, the degree of curvature increases as 𝛾𝛾 ≫ 0 increases.  

 
16 Subadditivity: a subadditive function is a 𝑓𝑓:𝑊𝑊 → 𝐵𝐵 where A is a domain, and B is an ordered 

co-domain that are closed following the property: ∀𝑥𝑥,𝑦𝑦 ∈ 𝑊𝑊, 𝑓𝑓(𝑥𝑥 + 𝑦𝑦) ≤ 𝑓𝑓(𝑥𝑥) + 𝑓𝑓(𝑦𝑦).  
17 That exhibits properties consistent with the principles of the cumulative prospect theory, more 

specifically the inverse S-shape. 
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The elevation parameter represents the attractiveness of the bet and the elevation 
increases as 𝜂𝜂 ≫ 0 or 𝜂𝜂 → ∞. Another weighting function was proposed by Prelec 
(1998) 

equation 67 

𝑤𝑤(𝑝𝑝) = 𝑒𝑒(−𝜕𝜕𝑐𝑐𝑙𝑙𝑝𝑝)𝛾𝛾 

𝛾𝛾 > 0 and the point at which the weighting function crosses the line 𝑤𝑤(𝑝𝑝) = 𝑝𝑝 is fixed 
at 1

𝑒𝑒
≈ 0.36788. The inflection point for the parametric equations typically occurs at 

𝑝𝑝 < 0.4. The function exhibits the inverse s-shape, concave for lower probabilities and 
convex for the upper probabilities.  

2.3. Methods of estimation  

The methods described here include local search optimisation and the nonlinear 
squares approach. The search space for both parameters (alpha and gamma) was 
restricted between 0 and 1. With a small search space, it is easier to find the parameters 
that give the smallest MSE (mean-squared error). With the local search optimisation 
one can constrain the values of the parameters.  

2.3.1. Nonlinear least squares 

This method follows the method introduced by Scales (1985), and Aster et al. (2005). 
It is known to minimise the weighted sum of the square of the residual.  

equation 68 

𝜀𝜀𝑖𝑖(𝜃𝜃) = 𝑉𝑉(𝑥𝑥𝑖𝑖,𝑝𝑝;𝜃𝜃) − 𝑉𝑉(𝐶𝐶;𝜃𝜃), 𝑖𝑖 = 1 …𝑛𝑛 

𝜀𝜀𝑖𝑖(𝜃𝜃) is the residual, while 𝜃𝜃 is the invested share (vector of parameters to be 
estimated), 𝑉𝑉(𝐶𝐶;𝜃𝜃) is the value of certainty equivalent (CE)18 for the prospect, and 
𝑥𝑥𝑖𝑖 = ℎ𝑖𝑖(𝑝𝑝, 𝑞𝑞,𝑦𝑦), is the value of each outcome in the sample. Now, Ε(𝜃𝜃) is the 
weighted sum of the residuals: 

equation 69 

Ε(𝜃𝜃) = �𝑤𝑤𝑖𝑖𝜀𝜀𝑖𝑖(𝜃𝜃)2
𝑛𝑛

𝑖𝑖=1 

 

where 𝑤𝑤𝑖𝑖 is the weight associated with each sample 𝑖𝑖.If 𝑓𝑓(𝜃𝜃) = √𝑤𝑤𝜀𝜀(𝜃𝜃) where 
𝜀𝜀(𝜃𝜃) = (𝜀𝜀1(𝜃𝜃), … , 𝜀𝜀2(𝜃𝜃)𝑃𝑃, and the weights are given with the following diagonal 
matrix 

 
18 A certainty equivalent (CE) of prospect 𝑥𝑥 is outcome 𝑝𝑝 such as 𝑝𝑝 ∼ 𝑥𝑥 , whereas often the symbol 

𝑥𝑥 denotes a constant prospect, see (Wakker, 2010). 
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matrix 1 

𝑤𝑤 = �
𝑤𝑤1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑤𝑤𝑛𝑛

� 

then one can write 

Ε(𝜃𝜃) = 𝜀𝜀(𝜃𝜃)𝑃𝑃𝑤𝑤𝜀𝜀(𝜃𝜃) = 𝑓𝑓(𝜃𝜃)𝑃𝑃𝑓𝑓(𝜃𝜃) 

The minimum of Ε(𝜃𝜃) is given when the gradient is equal to zero: 

∇Ε(θ) = 2𝐽𝐽𝜕𝜕𝑓𝑓(𝜃𝜃)𝑓𝑓(𝜃𝜃) = 0 

where 𝐽𝐽𝜕𝜕𝑓𝑓(𝜃𝜃) is a Jacobian matrix of 𝑓𝑓(𝜃𝜃), and thus one can denote  

matrix 2 

𝐽𝐽(𝜃𝜃) = 𝜕𝜕𝑓𝑓(𝜃𝜃) =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝑓𝑓1
𝜕𝜕𝜃𝜃1

⋯
𝜕𝜕𝑓𝑓1
𝜕𝜕𝜃𝜃𝑛𝑛

⋮ ⋱ ⋮
𝜕𝜕𝑓𝑓𝑛𝑛
𝜕𝜕𝜃𝜃1

⋯
𝜕𝜕𝑓𝑓𝑛𝑛
𝜕𝜕𝜃𝜃𝑛𝑛⎦

⎥
⎥
⎥
⎤

 

By Newton’s iteration method, the search vector for the 𝑘𝑘𝑃𝑃ℎ iteration is given as 𝐿𝐿𝑘𝑘 
and 𝜃𝜃𝑘𝑘 is the value for 𝜃𝜃 in the 𝑘𝑘𝑃𝑃ℎ iteration 

equation 70 
𝜃𝜃𝑘𝑘𝑡𝑡+1 = 𝜃𝜃𝑘𝑘 + 𝐿𝐿𝑘𝑘 

Expanding ∇Ε(θ) by using the Taylor series with respect to 𝜃𝜃 about 𝜃𝜃𝑘𝑘+1 = 𝜃𝜃𝑘𝑘 
one obtains 

equation 71 

∇Ε(θ) = 2𝐽𝐽𝜕𝜕𝑓𝑓(𝜃𝜃)𝑓𝑓(𝜃𝜃)

= 2𝜕𝜕𝑓𝑓(𝜃𝜃𝑘𝑘)𝑃𝑃𝑓𝑓(𝜃𝜃𝑘𝑘) + 2 ��𝑓𝑓𝑖𝑖(𝜃𝜃𝑘𝑘)𝜕𝜕2
𝑛𝑛

𝑖𝑖=1

𝑓𝑓𝑖𝑖(𝜃𝜃𝑘𝑘) + 𝜕𝜕𝑓𝑓(𝜃𝜃𝑘𝑘)𝑃𝑃𝜕𝜕𝑑𝑑𝑓𝑓(𝜃𝜃𝑘𝑘)� 𝐿𝐿𝑘𝑘 

where 𝜕𝜕2𝑓𝑓𝑖𝑖(𝜃𝜃) is the Hessian matrix of 𝑓𝑓𝑖𝑖(𝜃𝜃) which is given by 

matrix 3 

𝐻𝐻(𝜃𝜃) = 𝜕𝜕2𝑓𝑓(𝜃𝜃) =

⎣
⎢
⎢
⎢
⎢
⎡ 𝜕𝜕2𝑓𝑓1
𝜕𝜕𝜃𝜃12

⋯
𝜕𝜕2𝑓𝑓1

𝜕𝜕𝜃𝜃1𝜕𝜕𝜃𝜃𝑛𝑛
⋮ ⋱ ⋮

𝜕𝜕2𝑓𝑓𝑛𝑛
𝜕𝜕𝜃𝜃𝑛𝑛𝜕𝜕𝜃𝜃1

⋯
𝜕𝜕2𝑓𝑓1
𝜕𝜕𝜃𝜃12 ⎦

⎥
⎥
⎥
⎥
⎤
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Newtons’ iteration method (see e.g. (Amparo et al., 2007)), in general is given as 

equation 72 

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 −
𝑓𝑓′(𝑛𝑛)
𝑓𝑓(𝑛𝑛)  

Now if: 

equation 73 

𝐻𝐻(𝜃𝜃𝑘𝑘) =  �𝑓𝑓𝑖𝑖(𝜃𝜃𝑘𝑘)𝜕𝜕2
𝑛𝑛

𝑖𝑖=1

𝑓𝑓𝑖𝑖(𝜃𝜃𝑘𝑘) 

the value function for any given lottery is given as 

equation 74 

𝑈𝑈(𝐹𝐹|𝑣𝑣, 𝑥𝑥0,𝑤𝑤) = �𝑢𝑢(𝑥𝑥|𝑥𝑥0)𝑑𝑑𝑑𝑑(𝑥𝑥|𝑥𝑥0)

= � 𝑣𝑣(𝑥𝑥 − 𝑥𝑥0)𝑑𝑑(1 −𝑤𝑤�1 − 𝐹𝐹(𝑥𝑥)�
𝑥𝑥<𝑥𝑥0

+ � 𝑣𝑣(𝑥𝑥 − 𝑥𝑥0)𝑑𝑑𝑤𝑤�𝐹𝐹(𝑥𝑥)�
𝑥𝑥>𝑥𝑥0

 

where 𝑥𝑥0 is the reference point. The consequences above 𝑥𝑥0 are considered gains, and 
ones below are losses. In the previous expression 𝑤𝑤 is a probability weighting function, 
and 𝐹𝐹 is any given lottery. The cumulative density functions for losses are given as 

equation 75 

𝑑𝑑(𝑥𝑥|𝑥𝑥0) = 1 −𝑤𝑤�1 − 𝐹𝐹(𝑥𝑥)� for 𝑥𝑥 ≤ 𝑥𝑥0 

and the corresponding cumulative density function for gains is given as 

equation 76 

𝑑𝑑(𝑥𝑥|𝑥𝑥0) = 𝑤𝑤�𝐹𝐹(𝑥𝑥)� for 𝑥𝑥 ≥ 𝑥𝑥0 

The agent is evaluating the consequences, having in mind the reference-dependent 
utility function 

equation 77 

𝑢𝑢(𝑥𝑥|𝑥𝑥0) = 𝑣𝑣(𝑥𝑥 − 𝑥𝑥0) 

The probability weighting function is given as 𝑤𝑤(𝑝𝑝) = 𝑒𝑒−(−𝜕𝜕𝑛𝑛𝑝𝑝)𝛼𝛼, just as in the 
Allais paradox (see: Allais (1953)), weighted utility theory is given as 

equation 78 

𝑊𝑊(𝑝𝑝) = �𝑤𝑤(𝑥𝑥|𝑝𝑝,𝑔𝑔)𝑢𝑢(𝑥𝑥)
𝑥𝑥∈𝐶𝐶
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in the previous expression 

equation 79 

𝑤𝑤(𝑥𝑥|𝑝𝑝,𝑔𝑔) =
𝑔𝑔(𝑥𝑥)𝑝𝑝(𝑥𝑥)

∑ 𝑝𝑝(𝑦𝑦)𝑔𝑔(𝑦𝑦)𝜕𝜕∈𝐶𝐶
 

for some function 𝑔𝑔:𝐶𝐶 → ℝ. The probabilities must be distorted if one wants to apply 
the Allais paradox. One prominent theory that distorts the probabilities to this end is 
the rank-dependent expected utility theory. The new distorted cumulative distribution 
function (CDF) is given as 𝑤𝑤 ∘ 𝐹𝐹 , and then the resulting value function is given as: 

equation 80 

𝑣𝑣(𝑥𝑥|𝑤𝑤) = �𝑢𝑢(𝑥𝑥)𝑑𝑑𝑤𝑤�𝐹𝐹(𝑥𝑥)� 

3. Results from the MATLAB simulation 

The results from the MATLAB simulation using the code by Pitcher (2008) are shown 
below (Figure 1).  

 

Fig. 1. The values of 𝛼𝛼 and 𝛾𝛾 that minimise mean squared error (MSE)  

Source: author’s own calculation.  
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Table 1. The values of α and γ that minimise mean squared error (MSE) 

 
𝛼𝛼 𝛾𝛾 𝜃𝜃 mean 𝑀𝑀𝑆𝑆𝐸𝐸 Value 

function 
0.5211 0.5500 [0.2376;0.2565]; 0.0049  

𝛼𝛼 = Α(𝐼𝐼1(𝐼𝐼2)) 𝛾𝛾 = Γ(𝐼𝐼2) 𝜃𝜃1 = 𝛼𝛼; 𝜃𝜃2 = 𝛾𝛾 𝐸𝐸 = ∑(𝑝𝑝 ∗ ((𝑉𝑉 −  𝐶𝐶)2)); 𝑉𝑉 =  𝑣𝑣 ∗  𝑤𝑤 

Source: author’s own calculation. 

where: 

Table 2. Supplement 

Α Γ 𝐼𝐼1 𝐼𝐼2 𝑉𝑉 𝐶𝐶 
0.45 0.55 10 1 2.30 5 
0.457895 0.563158 12  2.37 5 
0.465789 0.576316 14  2.27 5 
0.473684 0.589474 16  2.34 5 
0.481579 0.602632 18  2.26 5 
0.489474 0.615789 20  2.61 5 
0.497368 0.628947 20  2.53 5 
0.505263 0.642105 20    
0.513158 0.655263 20    
0.521053 0.668421 20    
0.528947 0.681579 20    
0.536842 0.694737 20    
0.544737 0.707895 20    
0.552632 0.721053 20    
0.560526 0.734211 20    
0.568421 0.747368 1    
0.576316 0.760526 1    
0.584211 0.773684 1    
0.592105 0.786842 1    
0.6 0.8 1    

Source: author’s own calculation. 

 

 



54 Dushko Josheski, Mico Apostolov 

Table 3. Matrix 7X7  

0.598684 0 0 0 0 0 0 
0 0.49730456 0 0 0 0 0 
0 0 0.40161 0 0 0 0 
0 0 0 0.343918 0 0 0 

0 0 0 0 0.254 0 0 
0 0 0 0 0 0.158397 0 
0 0 0 0 0 0 0.158397 

Source: author’s own calculation. 

Table 4. 𝑣𝑣 in value function  

48.89 23.54 11.96 7.49 3.9375 3.3396 2.0376 
50.31 24.73 12.04 7.493 3.9375 3.3396 2.0376 
49.19 22.17 11.85 7.49 3.9375 3.3396 2.0376 
49.99 23.99 11.96 7.493 3.9375 3.3396 2.0376 
48.8 22.59 11.80 7.49 3.9375 3.3396 2.0376 

57.16 24.36 12.52 7.493 3.9375 3.3396 2.0376 
52.58 26.31 12.64 7.49 3.9375 3.3396 2.0376 

Source: author’s own calculation. 

The previous matrix is multiplied with the weights scalar so to obtain the value 
function: 

𝑤𝑤 =

⎣
⎢
⎢
⎢
⎢
⎡
0.0139
0.0082
0.0264
0.0128
0.0309
0.0077
0.0102⎦

⎥
⎥
⎥
⎥
⎤

 

As for the weight functions (see (Currim & Sarin, 1989)), proposed by Prelec 
(1998), defined as 𝑤𝑤: [0,1] → [0,1] ,∀:𝑝𝑝 ∈ [0,1] 

equation 81 

𝑤𝑤(𝑝𝑝) = 𝑒𝑒𝑥𝑥𝑝𝑝(−𝑝𝑝(−𝑙𝑙𝑛𝑛𝑝𝑝)𝛼𝛼) 

Ratan (2009) assumed that 𝛼𝛼 = 1, thus the previous expression becomes 𝑤𝑤(𝑝𝑝) = 𝑝𝑝𝑏𝑏, 
and he also claimed that 𝑝𝑝 > 1, or in this case: 

equation 82 

𝑤𝑤(𝑝𝑝) = exp (−(log(𝑝𝑝))𝛾𝛾 
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Value function 𝑉𝑉:𝑅𝑅 → ℝ; 𝑉𝑉;∀: 𝑥𝑥 ∈ 𝑅𝑅 : 

equation 83 

𝑉𝑉 = � 𝑥𝑥𝜃𝜃 , 𝑥𝑥 ≥ 0
−𝜆𝜆(−𝑥𝑥)𝜃𝜃,𝑥𝑥 < 0 

 

where 𝜆𝜆 > 1 and 𝜃𝜃 ∈ [0,1]. Now, let us switch to First Price Auctions (FPA).  

4. First Price Auctions and high bidding (overbidding) 

The bidding strategy in First Price Auctions (FPA)19 is given as: 

equation 84 

𝑝𝑝(𝑣𝑣𝑖𝑖) = 𝑣𝑣 −
1

𝐹𝐹𝑛𝑛−1(𝑣𝑣)
� 𝐹𝐹𝑛𝑛−1(𝑠𝑠)
𝑐𝑐

𝑟𝑟
𝑑𝑑𝑠𝑠 

𝑝𝑝0 < 𝑣𝑣 < 1 or zero otherwise. In the previous integral s is a signal, expression 𝑝𝑝(𝑣𝑣𝑖𝑖) 
represents buyers i valuation of the object bid that wins the object, and in such case 𝑣𝑣𝑖𝑖 
represents bidders i reservation value. In auctions, each bidder calculates his/her winning 
probability by compounding the probabilities that every other bidder bids less than 
his/her bid. In equilibrium, any bidder 𝑖𝑖 ∈ 𝑁𝑁 with valuation 𝑣𝑣𝑖𝑖 has expected payoff: 

equation 85 

E(𝑝𝑝, 𝑝𝑝𝑖𝑖, 𝑣𝑣𝑖𝑖) = (𝑣𝑣𝑖𝑖 − 𝑝𝑝𝑖𝑖)
(𝑝𝑝𝑖𝑖)𝑛𝑛−1

� 𝑛𝑛
𝑛𝑛 − 1�

𝑛𝑛−1 

when the CRRA coefficient is being set, i.e. when bidders are not risk neutral, the 
corresponding expected payoffs (and corresponding revenue) of the bidders are given 
as: 

equation 86 

E(𝑅𝑅, 𝑝𝑝𝑖𝑖, 𝑣𝑣𝑖𝑖) = 𝑣𝑣𝑖𝑖 ∗
(𝑝𝑝𝑖𝑖)𝑛𝑛−1

� 𝑛𝑛 − 1
𝑛𝑛 − 1 + 𝑎𝑎�

𝑛𝑛−1 

If 𝛼𝛼 is CRRA coefficient then: 

equation 87 

E(𝑅𝑅, 𝑝𝑝𝑖𝑖, 𝑣𝑣𝑖𝑖) = 𝑣𝑣𝑖𝑖 ∗
(𝑝𝑝𝑖𝑖)𝑛𝑛−1

𝛼𝛼𝑛𝑛−1
 

 
19 One assumes that CDF or 𝐹𝐹 is a uniform distribution over [0,1].  
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The generalised FPA-with reserve price bid is given as (cf. (Krishna, 2009)): 

equation 88 

𝛽𝛽(𝑣𝑣) = 𝑥𝑥 − �
1 − 𝐹𝐹(𝑥𝑥)
𝐹𝐹(𝑥𝑥)

𝑑𝑑𝑦𝑦
𝑐𝑐

0
 

In the previous expression 𝑥𝑥 signals are drawn from private values distribution v, 
so 𝑥𝑥𝑖𝑖 = 𝑣𝑣𝑖𝑖. In the CRRA case utility is given as 𝑈𝑈(𝑐𝑐) = 𝑐𝑐1−𝛼𝛼, and now the bid 
function is 

𝑝𝑝(𝑣𝑣𝑖𝑖) = 𝑣𝑣 −
1

𝐹𝐹
𝑛𝑛−1
1−𝑎𝑎(𝑣𝑣)

� 𝐹𝐹
𝑛𝑛−1
1−𝑎𝑎(𝑠𝑠)

𝑐𝑐

𝑟𝑟
𝑑𝑑𝑠𝑠 

In the previous expression 𝑝𝑝0 < 𝑣𝑣 < 1 or zero otherwise. In the case where the 
reserve price is set 𝑝𝑝 > 0: 

equation 89 

𝑝𝑝(𝑣𝑣𝑖𝑖) = 𝑣𝑣 −
1

𝐹𝐹
𝑛𝑛−1
1−𝑎𝑎(𝑣𝑣)

� 𝐹𝐹
𝑛𝑛−1
1−𝑎𝑎(𝑠𝑠)

𝑐𝑐

𝑟𝑟
𝑑𝑑𝑠𝑠 

Now if the coefficient is CARA (constant absolute risk aversion), i.e. if the utility 
function is given with the following expression 𝑢𝑢(𝑐𝑐) = 1 − 𝑒𝑒−𝑎𝑎𝑐𝑐 where 𝛼𝛼 > 0, then 
the according bidding function is given as: 

equation 90 

𝑝𝑝(𝑣𝑣𝑖𝑖) = 𝑣𝑣 +
1
𝑎𝑎

ln (1 −
𝑒𝑒−𝑎𝑎𝑐𝑐

𝐹𝐹𝑛𝑛−1(𝑣𝑣)
� [𝐹𝐹(𝑎𝑎−1𝑙𝑙𝑛𝑛𝑤𝑤]𝑁𝑁−1𝑑𝑑𝑤𝑤
𝑒𝑒𝑎𝑎𝑎𝑎

𝑒𝑒𝑎𝑎𝑎𝑎
 

where w represents wealth of the bidder, approximated by his/her valuation of the 
object which is subject to bidding at the auction. The inverse of equilibrium bidding 
strategy (Maskin & Riley 2000; Fibich & Gavish, 2011) is given as: 

equation 91 

𝑣𝑣’𝑖𝑖(𝑝𝑝) =
𝐹𝐹𝑖𝑖�𝑣𝑣𝑖𝑖(𝑝𝑝)�
𝑓𝑓𝑖𝑖(𝑣𝑣𝑖𝑖(𝑝𝑝))

= ��
1

𝑛𝑛 − 1
�

1
𝑣𝑣𝑖𝑖(𝑝𝑝) − 𝑝𝑝

𝑛𝑛

𝑖𝑖=1

�  −
1

𝑣𝑣𝑖𝑖(𝑝𝑝)− 𝑝𝑝�
 , 𝑖𝑖 = 1, … ,𝑛𝑛 

Bidders submit bids that are solutions to the optimisation problem, as in (Gayle & 
Richard, 2008): 
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equation 92 

𝛽𝛽 (𝑣𝑣) = 𝑎𝑎𝑝𝑝𝑔𝑔 max
𝑢𝑢∈(0,𝜔𝜔ℎ) 

(𝑣𝑣 − 𝑢𝑢) ∙ �𝐹𝐹𝑖𝑖�𝜆𝜆𝑖𝑖(𝑢𝑢)��𝑘𝑘𝑖𝑖−1��𝐹𝐹𝑖𝑖 �𝜆𝜆𝑖𝑖(𝑢𝑢)��
𝑘𝑘𝑗𝑗

𝑖𝑖≠1 

 

The probabilities of winning are 

equation 93 

𝑝𝑝𝑖𝑖(𝑝𝑝) = 𝑘𝑘𝑖𝑖 �
ℓ𝑖𝑖′(𝑣𝑣)
ℓ𝑖𝑖(𝑣𝑣)

𝑏𝑏(𝜔𝜔ℎ)

𝑟𝑟
��ℓ𝑖𝑖(𝑣𝑣)�𝑘𝑘𝑗𝑗 𝑑𝑑𝑣𝑣
𝑛𝑛

𝑖𝑖=1

 

In the previous expression ℓ𝑖𝑖(𝑣𝑣) = 𝐹𝐹𝑖𝑖(𝜆𝜆𝑖𝑖(𝑣𝑣)), and 𝑝𝑝 represents the reserve price 
in auction. Expected revenue for the auctioneer is 

equation 94 

𝐸𝐸(𝑝𝑝, 𝑝𝑝𝑖𝑖, 𝑣𝑣𝑖𝑖) = 𝜔𝜔ℎ − 𝑝𝑝��𝐹𝐹𝑖𝑖(𝑝𝑝)�𝑘𝑘𝑗𝑗
𝑛𝑛

𝑖𝑖=1

− �
ℓ𝑖𝑖′(𝑣𝑣)
ℓ𝑖𝑖(𝑣𝑣)

𝑏𝑏(𝜔𝜔ℎ)

𝑟𝑟
��ℓ𝑖𝑖(𝑣𝑣)�𝑘𝑘𝑗𝑗 𝑑𝑑𝑣𝑣
𝑛𝑛

𝑖𝑖=1

 

and the expected revenue for the bidders 𝑖𝑖 group is 

equation 95 

𝐸𝐸𝑖𝑖  (𝑝𝑝, 𝑝𝑝𝑖𝑖, 𝑣𝑣𝑖𝑖) = 𝑘𝑘𝑖𝑖 � �𝐹𝐹𝑖𝑖−1(ℓ𝑖𝑖(𝑣𝑣)) − 𝑣𝑣� ∙
ℓ𝑖𝑖′(𝑣𝑣)
ℓ𝑖𝑖(𝑣𝑣)

𝑏𝑏(𝜔𝜔ℎ)

𝑟𝑟
��ℓ𝑖𝑖(𝑣𝑣)�𝑘𝑘𝑗𝑗 𝑑𝑑𝑣𝑣
𝑛𝑛

𝑖𝑖=1

 

 In the prospect theoretical approach, bidders weight probabilities, and they 
evaluate gains of the lottery relative to theory reference point via the value function. 
Here, the weighting function is given as in (Currim & Sarin, 1989): 

equation 96 

𝑤𝑤(𝑝𝑝) = �
0;  𝑝𝑝 = 0

𝜇𝜇𝑝𝑝 + η; p ∈ (0.1)
1;𝑝𝑝 = 1 

 

where 𝜂𝜂 > 0;𝜇𝜇 > 0, such that 2𝜂𝜂 + 𝜇𝜇 < 1. Hence, in symmetric FPA, for any bidder 
𝑖𝑖 ∈ 𝑁𝑁 that has valuation 𝑣𝑣𝑖𝑖 with expected payoff 𝑝𝑝 ∈ (0, 𝑣𝑣𝑖𝑖), and all other bidders bid 
𝑗𝑗 ∈ 𝑁𝑁 �̅�𝑊{𝑖𝑖} follow a symmetric differentiable strategy 𝛽𝛽 ∈ 𝐵𝐵𝑖𝑖 : 

equation 97 

𝑤𝑤�𝐹𝐹𝑛𝑛−1�𝛽𝛽−1(𝑝𝑝)��(𝑣𝑣𝑖𝑖 − 𝑝𝑝) with this probability, weights risk-neutral bidders in FPA 
bid: 
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Proposition 1 

equation 98 

𝛽𝛽𝑖𝑖(𝑣𝑣𝑖𝑖) =
1

𝑤𝑤�𝑣𝑣𝑖𝑖𝑛𝑛−1�
� 𝑥𝑥

𝜕𝜕𝑤𝑤(𝑥𝑥)𝑛𝑛−1

𝜕𝜕𝑥𝑥

𝑐𝑐𝑖𝑖

0
𝑑𝑑𝑥𝑥 = 𝑣𝑣𝑖𝑖 −

∫ 𝑤𝑤(𝑥𝑥)𝑛𝑛−1𝑑𝑑𝑥𝑥𝑐𝑐𝑖𝑖
0
𝑤𝑤(𝑣𝑣𝑖𝑖)𝑛𝑛−1

 

when bidders are assumed to weight probabilities before compounding and evaluate 
payoffs relative to the zero reference point.  

Proof of proposition 1  
Here, FOC with respect to 𝑝𝑝 is 

equation 99 

(𝑛𝑛 − 1)𝑤𝑤(𝐹𝐹�𝛽𝛽−1(𝑝𝑝)�𝑛𝑛−2  
𝜕𝜕𝑤𝑤(𝐹𝐹�𝛽𝛽−1(𝑝𝑝)�

𝜕𝜕𝛽𝛽−1(𝑝𝑝)  
𝜕𝜕𝛽𝛽−1(𝑝𝑝)
𝜕𝜕𝑝𝑝

(𝑣𝑣𝑖𝑖 − 𝑝𝑝) = 𝑤𝑤(𝐹𝐹�𝛽𝛽−1(𝑝𝑝)�𝑛𝑛−1 

In symmetric equilibrium 𝑝𝑝 = 𝛽𝛽(𝑣𝑣𝑖𝑖), hence 

equation 100 

(𝑛𝑛 − 1)
𝜕𝜕𝑤𝑤�𝐹𝐹(𝑤𝑤𝑖𝑖)�

𝜕𝜕𝑣𝑣𝑖𝑖
1

𝛽𝛽′(𝑣𝑣𝑖𝑖)
�𝑣𝑣𝑖𝑖 − 𝛽𝛽(𝑣𝑣𝑖𝑖)� = 𝑤𝑤�𝐹𝐹(𝑤𝑤𝑖𝑖)� 

which, when arranged yields: 

equation 101 

𝜕𝜕𝑤𝑤�𝐹𝐹(𝑤𝑤𝑖𝑖)�
𝜕𝜕𝑣𝑣𝑖𝑖

𝑣𝑣𝑖𝑖 =
1

𝑛𝑛 − 1
𝑤𝑤(𝐹𝐹(𝑣𝑣𝑖𝑖)𝛽𝛽′(𝑣𝑣𝑖𝑖) +

𝜕𝜕𝑤𝑤�𝐹𝐹(𝑤𝑤𝑖𝑖)�
𝜕𝜕𝑣𝑣𝑖𝑖

𝛽𝛽(𝑣𝑣𝑖𝑖) 

If one multiplies the whole expression with (𝑛𝑛 − 1)𝑤𝑤�𝐹𝐹(𝑤𝑤𝑖𝑖)�
𝑛𝑛−2 one obtains 

equation 102 

𝑤𝑤(𝐹𝐹(𝑣𝑣𝑖𝑖)𝛽𝛽′(𝑣𝑣𝑖𝑖) + (𝑛𝑛 − 1)
𝜕𝜕𝑤𝑤�𝐹𝐹(𝑤𝑤𝑖𝑖)�

𝜕𝜕𝑣𝑣𝑖𝑖
𝑤𝑤�𝐹𝐹(𝑣𝑣𝑖𝑖)�

𝑛𝑛−2𝛽𝛽(𝑣𝑣𝑖𝑖)

= (𝑛𝑛 − 1)
𝜕𝜕𝑤𝑤�𝐹𝐹(𝑤𝑤𝑖𝑖)�

𝜕𝜕𝑣𝑣𝑖𝑖
𝑤𝑤�𝐹𝐹(𝑣𝑣𝑖𝑖)�

𝑛𝑛−2𝑣𝑣𝑖𝑖 

after which 

equation 103 

𝜕𝜕
𝜕𝜕𝑣𝑣𝑖𝑖

(𝑤𝑤�𝐹𝐹(𝑣𝑣𝑖𝑖)𝑛𝑛−1𝛽𝛽(𝑣𝑣𝑖𝑖)� = 𝑣𝑣𝑖𝑖
𝜕𝜕𝑤𝑤�𝐹𝐹(𝑤𝑤𝑖𝑖)�

𝑛𝑛−1

𝜕𝜕𝑣𝑣𝑖𝑖
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From 𝛽𝛽𝑖𝑖(𝑣𝑣𝑖𝑖) = 1
𝑤𝑤�𝑐𝑐𝑖𝑖

𝑛𝑛−1� ∫ 𝑥𝑥 𝜕𝜕𝑤𝑤(𝑥𝑥)𝑛𝑛−1

𝜕𝜕𝑥𝑥
𝑐𝑐𝑖𝑖
0 𝑑𝑑𝑥𝑥 = 𝑣𝑣𝑖𝑖 −

∫ 𝑤𝑤(𝑥𝑥)𝑛𝑛−1𝑑𝑑𝑥𝑥𝑎𝑎𝑖𝑖
0
𝑤𝑤(𝑐𝑐𝑖𝑖)𝑛𝑛−1

 one can see clearly 

that 𝛽𝛽𝑖𝑖 < 𝑣𝑣𝑖𝑖;∀ 𝑣𝑣𝑖𝑖 ∈ (0,1). By differentiating 𝛽𝛽𝑖𝑖 with respect to 𝑣𝑣𝑖𝑖 one concludes that 
it is increasing in 𝑣𝑣𝑖𝑖 since 

equation 104 

1 −
𝑤𝑤�𝐹𝐹(𝑤𝑤𝑖𝑖)�

2(𝑛𝑛−1)
−
𝜕𝜕𝑤𝑤�𝐹𝐹(𝑤𝑤𝑖𝑖)�

𝑛𝑛−1

𝜕𝜕𝑣𝑣𝑖𝑖
𝑤𝑤�𝐹𝐹(𝑤𝑤𝑖𝑖)�

2(𝑛𝑛−1) > 0 

Now, when bidders are bid-shading or pretending that 𝑣𝑣𝑖𝑖 ∼ 𝑧𝑧𝑖𝑖, and this bidder’s 
expected payoff is 𝛽𝛽(𝑧𝑧) < 𝑣𝑣𝑖𝑖, then for competitors 𝛽𝛽 

equation 105 

𝐸𝐸𝑝𝑝(𝑧𝑧) = 𝑤𝑤�𝐹𝐹(𝑧𝑧)�𝑛𝑛−1(𝑣𝑣𝑖𝑖 − 𝑧𝑧) + � 𝑤𝑤�𝐹𝐹(𝑥𝑥)�𝑛𝑛−1𝑑𝑑𝑥𝑥
𝑧𝑧

0
 

Next 

equation 106 

𝐸𝐸𝑝𝑝(𝑣𝑣𝑖𝑖) − 𝐸𝐸𝑝𝑝(𝑧𝑧) = 𝑤𝑤�𝐹𝐹(𝑧𝑧)�𝑛𝑛−1 − � 𝑤𝑤�𝐹𝐹(𝑥𝑥)�𝑛𝑛−1𝑑𝑑𝑥𝑥
𝑐𝑐𝑖𝑖

𝑧𝑧
 

and from the assumption that F (CDF) is a uniform distribution. one has: 

equation 107 

𝛽𝛽∗(𝑣𝑣𝑖𝑖) = 𝑣𝑣𝑖𝑖 −
∫ 𝑤𝑤(𝑥𝑥)𝑛𝑛−1𝑑𝑑𝑥𝑥𝑎𝑎𝑖𝑖
0
𝑤𝑤(𝑐𝑐𝑖𝑖)𝑛𝑛−1

 ∎ To define reference point 𝑝𝑝 

equation 108 

𝑝𝑝(𝑣𝑣) =
𝜓𝜓
𝑛𝑛
𝑣𝑣 

where function 𝑝𝑝 is defined as: 𝑝𝑝: (0,1) → (0,1). This result applies ∀𝑣𝑣 ∈ (0,1), also 
in the previous expression 𝜓𝜓 ∈ (0,1). Now, for the equilibrium analysis take any 
bidder 𝑖𝑖 ∈ 𝑁𝑁, assuming again that any bidder 𝑗𝑗 ∈ 𝑁𝑁 �̅�𝑊{𝑖𝑖} bids according to symmetric, 
differentiable strategy 𝛽𝛽 ∈ 𝐵𝐵𝑖𝑖, the expected payoff of bidder 𝑖𝑖 from bidding bid 
𝑝𝑝 ∈ (0,𝑣𝑣) is given as: 

equation 109 

𝑤𝑤�𝐹𝐹�𝛽𝛽−1(𝑝𝑝)��𝜆𝜆1�𝑣𝑣𝑖𝑖 − 𝑝𝑝 − 𝑝𝑝(𝑣𝑣𝑖𝑖)� − 𝑤𝑤[1 − 𝐹𝐹(𝛽𝛽−1(𝑝𝑝)]𝜆𝜆𝑝𝑝𝑣𝑣𝑖𝑖 
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where 𝜆𝜆1 = 1 if 𝑝𝑝 ≤ 𝑣𝑣𝑖𝑖 − 𝑝𝑝(𝑣𝑣𝑖𝑖) and is equal to 𝜆𝜆 if otherwise. Hence, under the 
previous conditions a new proposition follows. 

Proposition 2  
A unique risk-neutral symmetric equilibrium in FPA auctions is characterised by  

𝛽𝛽+(𝑣𝑣𝑖𝑖) =

⎩
⎨

⎧(1 +
𝜓𝜓(𝜆𝜆 − 1)

𝑛𝑛
𝛽𝛽(𝑣𝑣𝑖𝑖);

𝑣𝑣𝑖𝑖
𝛽𝛽(𝑣𝑣𝑖𝑖)

> 1 +
𝜓𝜓𝜆𝜆
𝑛𝑛 − 𝜆𝜆

 

𝑣𝑣𝑖𝑖 −
𝜓𝜓
𝑛𝑛
𝑣𝑣𝑖𝑖;

0
𝑤𝑤

 

when bidders are assumed to weight probabilities after compounding and they are 
evaluating payoffs relative to the reference point.  

Proof of proposition 2 
Here, FOC with respect to 𝑝𝑝 is 

equation 110 

𝜕𝜕𝑤𝑤�𝐹𝐹�𝛽𝛽−1(𝑝𝑝)��
𝜕𝜕𝛽𝛽−1(𝑝𝑝)

𝜕𝜕𝛽𝛽−1(𝑝𝑝)
𝜕𝜕𝑝𝑝 

𝜆𝜆�𝑣𝑣𝑖𝑖 − 𝑝𝑝 − 𝑝𝑝(𝑣𝑣𝑖𝑖)�

−
𝜕𝜕𝑤𝑤�1 − 𝐹𝐹�𝛽𝛽−1(𝑝𝑝)��

𝜕𝜕𝛽𝛽−1(𝑝𝑝)
𝜕𝜕𝛽𝛽−1(𝑝𝑝)
𝜕𝜕𝑝𝑝 

𝜆𝜆𝑝𝑝(𝑣𝑣𝑖𝑖) = 𝜆𝜆1𝑤𝑤�𝐹𝐹�𝛽𝛽−1(𝑝𝑝)�� 

The equilibrium bidding strategy is 𝑝𝑝 = 𝑝𝑝(𝑣𝑣𝑖𝑖) , and thus 

equation 111 

𝜕𝜕𝑤𝑤 �𝐹𝐹(𝑣𝑣𝑖𝑖)�
𝜕𝜕𝑣𝑣𝑖𝑖

1
𝛽𝛽′(𝑣𝑣𝑖𝑖) 

𝜆𝜆1�𝑣𝑣𝑖𝑖 − 𝛽𝛽(𝑣𝑣𝑖𝑖) − 𝑝𝑝(𝑣𝑣𝑖𝑖)� −
𝜕𝜕𝑤𝑤 �1 − 𝐹𝐹(𝑣𝑣𝑖𝑖)�

𝜕𝜕𝑣𝑣𝑖𝑖
1

𝛽𝛽′(𝑣𝑣𝑖𝑖) 
𝜆𝜆𝑝𝑝(𝑣𝑣𝑖𝑖)

= 𝜆𝜆1𝑤𝑤�𝐹𝐹(𝑣𝑣𝑖𝑖)� 

By arranging the previous expression 

equation 112 

𝜕𝜕𝑤𝑤 �𝐹𝐹(𝑣𝑣𝑖𝑖)�
𝜕𝜕𝑣𝑣𝑖𝑖

𝜆𝜆1�𝑣𝑣𝑖𝑖 − 𝑝𝑝(𝑣𝑣𝑖𝑖)� −
𝜕𝜕𝑤𝑤 �1 − 𝐹𝐹(𝑣𝑣𝑖𝑖)�

𝜕𝜕𝑣𝑣𝑖𝑖
𝜆𝜆𝑝𝑝(𝑣𝑣𝑖𝑖)

= 𝜆𝜆1 �𝑤𝑤(𝐹𝐹(𝑣𝑣𝑖𝑖)𝛽𝛽′(𝑣𝑣𝑖𝑖) +
𝜕𝜕𝑤𝑤 �𝐹𝐹(𝑣𝑣𝑖𝑖)�

𝜕𝜕𝑣𝑣𝑖𝑖
𝛽𝛽(𝑣𝑣𝑖𝑖)�

= 𝜆𝜆1
𝜕𝜕
𝜕𝜕𝑣𝑣𝑖𝑖

[𝑤𝑤(𝐹𝐹(𝑣𝑣𝑖𝑖)𝛽𝛽(𝑣𝑣𝑖𝑖)] 

for the optimal bid one has: 
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equation 113 

𝛽𝛽(𝑣𝑣𝑖𝑖) =
1

𝑤𝑤�𝐹𝐹(𝑣𝑣𝑖𝑖)�
�� 𝑥𝑥

𝜕𝜕𝑤𝑤(𝑥𝑥)𝑛𝑛−1

𝜕𝜕𝑥𝑥

𝑐𝑐𝑖𝑖

0
𝑑𝑑𝑥𝑥 − � 𝑝𝑝(𝑥𝑥)

𝜕𝜕𝑤𝑤(𝑥𝑥)𝑛𝑛−1

𝜕𝜕𝑥𝑥

𝑐𝑐𝑖𝑖

0
𝑑𝑑𝑥𝑥�

−
𝜆𝜆
𝜆𝜆1

1
𝑤𝑤�𝐹𝐹(𝑣𝑣𝑖𝑖)�

� 𝑝𝑝(𝑥𝑥)
1 − 𝜕𝜕𝑤𝑤(𝑥𝑥)𝑛𝑛−1

𝜕𝜕𝑥𝑥

𝑐𝑐𝑖𝑖

0
 

In the previous expression (𝑥𝑥)𝑛𝑛−1 = 𝐹𝐹(𝑥𝑥) and one can replace the reference point 
𝑝𝑝 with 𝑝𝑝 = 𝜓𝜓

𝑛𝑛
20. Now it can be checked whether equilibrium ∃𝑝𝑝 > 𝑣𝑣𝑖𝑖 − 𝑝𝑝(𝑣𝑣𝑖𝑖) and 

whether ∃𝑝𝑝 = 𝑣𝑣𝑖𝑖 − 𝑝𝑝(𝑣𝑣𝑖𝑖)20F

21. Then the previous equality becomes inequality 

equation 114 

𝛽𝛽(𝑣𝑣𝑖𝑖) < 𝑣𝑣𝑖𝑖 −
𝑣𝑣𝑖𝑖
𝑛𝑛

< 𝑣𝑣𝑖𝑖 − 𝑝𝑝(𝑣𝑣𝑖𝑖)  

The previous concludes that there is no interior solution. Hence, 𝛽𝛽(𝑣𝑣𝑖𝑖)  =  𝑣𝑣𝑖𝑖  −
 𝑝𝑝(𝑣𝑣𝑖𝑖) if one assumes that 𝑝𝑝 ≥ 𝑣𝑣𝑖𝑖 − 𝑝𝑝(𝑣𝑣𝑖𝑖). Now, assuming that 𝑝𝑝 ≤ 𝑣𝑣𝑖𝑖 − 𝑝𝑝(𝑣𝑣𝑖𝑖), to 
check whether 𝑝𝑝 ≤ 𝑣𝑣𝑖𝑖 − 𝑝𝑝(𝑣𝑣𝑖𝑖) when 𝜆𝜆 = 1. Therefore 

equation 115 

𝛽𝛽(𝑣𝑣𝑖𝑖) = �1 +
𝜓𝜓(𝜆𝜆 − 1)

𝑛𝑛 �
1

𝑤𝑤�𝐹𝐹(𝑣𝑣𝑖𝑖)�
� 𝑥𝑥

𝜕𝜕𝑤𝑤(𝑥𝑥)𝑛𝑛−1

𝜕𝜕𝑥𝑥
𝑑𝑑𝑥𝑥

𝑐𝑐𝑖𝑖

0
 

The previous expression for high values of 𝜆𝜆 and 𝑣𝑣𝑖𝑖 means that 𝛽𝛽(𝑣𝑣𝑖𝑖) > 𝑣𝑣𝑖𝑖 −
𝑝𝑝(𝑣𝑣𝑖𝑖). If F is uniform distribution, then there exists equilibrium (cf. Reny (2011). 
Under certain conditions such as when the player set of strategies is non-empty and 
closed, the density function should be continuous, the type set should be partially 
ordered, the strategy set needs to be a compact metric space and a semi-lattice with 
a closed partial order, and the utility function should be measurable and bounded. This 
article generalised Athey’s (2001) and McAdams’ (2003) results on the existence of 
monotone pure strategy equilibria. According to the previous strategy, bidders are 
allowed to bid as high as they want so that the utility function is not bounded, which 
means that the strategy sets are not compact either (see also (Keskin, 2011))22. 

 
20 Corresponding expression would be 

𝛽𝛽(𝑣𝑣𝑖𝑖) = �1 −
𝜓𝜓
𝑛𝑛�

1
𝑤𝑤�𝐹𝐹(𝑣𝑣𝑖𝑖)�

� 𝑥𝑥
𝜕𝜕𝑤𝑤(𝑥𝑥)𝑛𝑛−1

𝜕𝜕𝑥𝑥

𝑐𝑐𝑖𝑖

0
𝑑𝑑𝑥𝑥 −

𝜆𝜆
𝜆𝜆1

 
𝜓𝜓
𝑛𝑛

1
𝑤𝑤�𝐹𝐹(𝑣𝑣𝑖𝑖)�

� 𝑥𝑥
𝜕𝜕𝑤𝑤 (1 − 𝜕𝜕𝑤𝑤(𝑥𝑥)𝑛𝑛−1)

𝜕𝜕𝑥𝑥 𝑑𝑑𝑥𝑥.
𝑐𝑐𝑖𝑖

0
 

21 Although 𝜆𝜆 = 1 when 𝑝𝑝 = 𝑣𝑣𝑖𝑖 − 𝑝𝑝(𝑣𝑣𝑖𝑖), then 𝜆𝜆 = 𝜆𝜆1.  
22 Subset S of a topological space 𝑋𝑋 is compact if for every open cover of S there exists a finite 

subcover of S. If 𝐶𝐶 = {𝑈𝑈𝛼𝛼:𝛼𝛼 ∈ 𝑊𝑊} is an indexed family of sets 𝑈𝑈𝛼𝛼, then 𝐶𝐶 is a cover of 𝑋𝑋 if 𝑋𝑋 ⊆ ⋃
𝛼𝛼∈𝐴𝐴 

𝑈𝑈𝛼𝛼. 
If one takes that this holds: 𝒜𝒜 = {𝑊𝑊 ∈ ℬ|∃𝑈𝑈 ∈ 𝒪𝒪:𝑊𝑊 ⊆ 𝑈𝑈},where Β is a topological basis of 𝑋𝑋 and Ο is 
an open cover of 𝑋𝑋. Here 𝑊𝑊 is a refinement of 𝒪𝒪, and ∀ 𝑊𝑊 ∈ 𝒜𝒜, and one select 𝑈𝑈𝐴𝐴 ∈ 𝒪𝒪, then 𝒞𝒞 =
{𝑈𝑈𝐴𝐴 ∈ 𝒪𝒪|𝑊𝑊 ∈ 𝒜𝒜}, see (Munkres, 2000). 
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However, these two properties can be satisfied when one narrows the strategy set to 
[0,1]. Hence, if 𝐹𝐹 is a uniform distribution then proposition 2 holds. ∎  

The definitions and proof of stochastic dominance and overbidding are given in 
Appendix. 

5. Error return function (erf) for the prospect theory  

There exists a market with 𝑁𝑁-number of securities. At some point in time 𝑡𝑡 an investor 
can purchase 𝛼𝛼𝑛𝑛 units of generic 𝑛𝑛𝑃𝑃ℎ security23. The allocation is represented by the 
𝑁𝑁𝑃𝑃ℎ dimensional vector 𝛼𝛼, where 𝑃𝑃𝑃𝑃 is a price at the generic time 𝑡𝑡 of the generic 𝑛𝑛𝑃𝑃ℎ 
security. Now, given this and with allocation vector 𝛼𝛼, the investor forms portfolio 
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𝑤𝑤𝑃𝑃(𝛼𝛼) = 𝛼𝛼′𝑝𝑝𝑃𝑃 

In investment horizon 𝜏𝜏, the market prices of the securities are multivariate random 
variables. The simple function of a one-dimensional random variable price is 

equation 117 

𝑤𝑤𝑃𝑃+𝜏𝜏(𝛼𝛼) = 𝛼𝛼′𝑝𝑝𝑃𝑃+𝜏𝜏 

The objective of the investor is 𝜓𝜓 , as he/she wants the largest possible amount of 
benefits according to the non-satiation principle. Absolute wealth is given as 
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𝜓𝜓𝛼𝛼 = 𝑤𝑤𝑃𝑃+𝜏𝜏(𝛼𝛼) = 𝛼𝛼′𝑃𝑃𝑃𝑃+𝜏𝜏 

In relative wealth, the investor is concerned with overperforming a reference 
portfolio, whose allocation is denote with 𝛽𝛽, and the objective of maximisation is 
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𝜓𝜓𝛼𝛼 ≡ 𝑤𝑤𝑃𝑃+𝜏𝜏(𝛼𝛼)− 𝛾𝛾(𝛼𝛼)𝑤𝑤𝑃𝑃+𝜏𝜏(𝛽𝛽)  

In the previous equation, 𝛾𝛾 is a normalisation factor which means that at the time 
when the investment decision is made, the reference portfolio and the allocation have 
the same value 
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𝛾𝛾(𝛼𝛼) =
𝑤𝑤𝑃𝑃(𝛼𝛼)
𝑤𝑤𝑃𝑃(𝛽𝛽) 

 
23 In the case of equities these units are shares, in the case of futures these units are contracts. 
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According to the prospect theory (Kahneman & Tversky, 1979), investors are 
concerned with changes in wealth rather than in absolute wealth. Thus, their objective 
becomes 

equation 121 

𝜓𝜓𝛼𝛼 = 𝑤𝑤𝑃𝑃+𝜏𝜏(𝛼𝛼)−𝑤𝑤(𝛼𝛼) 

The explicit expression in terms of allocation becomes: 𝜓𝜓𝛼𝛼 = 𝛼𝛼′(𝑝𝑝𝑃𝑃+𝜏𝜏 − 𝑝𝑝𝑃𝑃).With 
market vector 𝑀𝑀, the introduced previous expression becomes 𝜓𝜓𝛼𝛼 = 𝛼𝛼′𝑀𝑀, where 
𝑀𝑀 ≡ 𝑎𝑎 + 𝐵𝐵𝑝𝑝𝑃𝑃+𝜏𝜏. Furthermore, 𝜓𝜓𝛼𝛼 = 𝛼𝛼′𝐾𝐾𝑝𝑝𝑃𝑃+𝜏𝜏 where 𝐾𝐾 ≡ 𝐼𝐼𝑛𝑛 −

𝑝𝑝𝑡𝑡𝛽𝛽′
𝛽𝛽′𝑝𝑝𝑡𝑡

 where 𝐼𝐼𝑛𝑛 is an 
identity matrix. Hence, it follows that the allocation function is homogenous of degree 
one 𝜓𝜓𝜆𝜆𝛼𝛼 = 𝜆𝜆𝜓𝜓𝛼𝛼, and also is an additive function 𝜓𝜓𝛼𝛼+𝛽𝛽 = 𝜓𝜓𝛼𝛼 + 𝜓𝜓𝛽𝛽. When ranking 
two allocations 𝛼𝛼,𝛽𝛽, the two allocations might not be comparable, therefore all the 
features of allocation are summarised as 𝒮𝒮: 𝛼𝛼 ↦ 𝒮𝒮(𝛼𝛼). Now the investor can chose the 
allocation with the highest degree of satisfaction. This approach is different from the 
stochastic dominance approach (see: (Ingersoll, 1987; Levy, 1998; Yamai & Yoshiba, 
2002))24. For the features of satisfaction see also Frittelli, Rosazza and Gianin (2002). 
The scale invariant index is also known as Sharpe ratio defined as 𝒮𝒮𝑅𝑅(𝛼𝛼) = 𝐸𝐸{𝜓𝜓𝛼𝛼}

𝑆𝑆𝑃𝑃𝑑𝑑𝑒𝑒𝑐𝑐.{𝜓𝜓𝛼𝛼}, 
which means that high standard deviation is a drawback if the expected utility 
is positive. Additionally, monotonicity requirements are as follows: 𝜓𝜓𝛼𝛼 ≥ 𝜓𝜓𝛽𝛽 ;∀𝒮𝒮 ⇒
𝒮𝒮(𝛼𝛼) ≥ 𝒮𝒮(𝛽𝛽). For sensibility, i.e. monotonicity, see Artzner, Delbaen, Eber, and 
Heath (1999). A further requirement is that of positive homogeneity: 𝜓𝜓𝜆𝜆𝛼𝛼 =
𝜆𝜆𝜓𝜓𝛼𝛼 ,∀𝜆𝜆: 𝜆𝜆 ≥ 0, and additive 𝒮𝒮(𝛼𝛼 + 𝛽𝛽) ≥ 𝒮𝒮(𝛼𝛼) + 𝒮𝒮(𝛽𝛽), or sub-additive 𝒮𝒮(𝛼𝛼 + 𝛽𝛽) ≤
𝒮𝒮(𝛼𝛼) + 𝒮𝒮(𝛽𝛽). Next, regarding concavity and convexity – an index of satisfaction is 
said to be concave for ∀𝜆𝜆: 𝜆𝜆 ∈ (0,1) and the following inequality holds: 
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𝒮𝒮(𝜆𝜆𝛼𝛼 + (1 − 𝜆𝜆)𝛽𝛽) ≥ 𝜆𝜆𝒮𝒮(𝛼𝛼) + (1 − 𝜆𝜆)𝒮𝒮𝛽𝛽 

Similarly, the index of satisfaction is said to be convex for ∀𝜆𝜆: 𝜆𝜆 ∈ (0,1) when the 
following inequality holds 𝒮𝒮(𝜆𝜆𝛼𝛼 + (1 − 𝜆𝜆)𝛽𝛽) ≤ 𝜆𝜆𝒮𝒮(𝛼𝛼) + (1 − 𝜆𝜆)𝒮𝒮𝛽𝛽. On the 
opposite side of the satisfaction risk premium is dissatisfaction due to the uncertainty 
of risky allocation 𝑅𝑅 ≡ 𝒮𝒮(𝑝𝑝) − 𝒮𝒮(𝑝𝑝 + 𝑓𝑓) where 𝑝𝑝 is risk-free allocation and 𝑓𝑓 is any 
fair game. Risk aversion is if 𝑅𝑅(𝛼𝛼) ≥ 0, while risk propensity is 𝑅𝑅(𝛼𝛼) ≤ 0. 

6. Certainty equivalent  

Let us consider the expected utility from a given allocation 
 

24 Strong dominance is 𝐹𝐹𝜓𝜓𝛼𝛼−𝜓𝜓𝛽𝛽
(0) ≡ ℙ�𝜓𝜓𝛼𝛼 − 𝜓𝜓𝛽𝛽 ≤ 0� = 0; this is a strong dominance or order 

zero dominance, and weak dominance when 𝐹𝐹𝜓𝜓𝛼𝛼(𝜓𝜓) ≤ 𝐹𝐹𝜓𝜓𝛽𝛽
(𝜓𝜓),∀𝜓𝜓:𝜓𝜓 ∈ (−∞; +∞), this is also called 

first order dominance. 
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equation 123 

𝛼𝛼 ↦ 𝐸𝐸{𝑢𝑢(𝜓𝜓𝛼𝛼)} ≡ �𝑢𝑢(𝜓𝜓)𝑓𝑓𝜓𝜓𝛼𝛼(𝜓𝜓)𝑑𝑑𝜓𝜓
ℝ

 

In the previous expression, 𝑓𝑓𝜓𝜓𝛼𝛼  is a PDF of the objective. The certainty equivalent 
of an allocation is the risk-free amount of money that would make the investor satisfied 
as a risky allocation 
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𝛼𝛼 ↦ 𝐶𝐶𝐸𝐸(𝛼𝛼) ≡ −𝜙𝜙 ln�𝜃𝜃𝜓𝜓𝛼𝛼 �
𝑖𝑖
𝜙𝜙
�� 

where 𝜙𝜙 has a dimension of money and it cancels it out. These properties are depicted 
below (Figure 2): 

 

Fig. 2 (a and b). The erf utility function of the investor is not a concave function of allocation,  
and the certainty equivalent for the power utility function is homogeneous 

Source: author’s own calculation. 
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7. Translation invariant  

The objective of the investor, besides being positive and homogenous, is additive25, 
and by adding two portfolios 𝛼𝛼,𝛽𝛽, one obtains a sum of the two separate objectives 
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𝜓𝜓𝛼𝛼+𝛽𝛽 = 𝜓𝜓𝛼𝛼 + 𝜓𝜓𝛽𝛽 

The utility from the sum of the two alternatives is unrelated with the satisfaction 
drawn by the investor from investing in separate portfolios. Thus, the corresponding 
index of satisfaction is given as: 
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𝒮𝒮(𝛼𝛼 + 𝛽𝛽) = 𝒮𝒮(𝛼𝛼) + 𝒮𝒮(𝛽𝛽) 

The previous property is called translation invariance (cf. Meucci, 2005). One can 
restate the translation invariance property as 
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𝜓𝜓𝛽𝛽 ≡ 1 ⇒ 𝒮𝒮(𝛼𝛼 + 𝜆𝜆𝛽𝛽) = 𝒮𝒮(𝛼𝛼) + 𝜆𝜆 

 

Fig. 3. Translation invariance of the satisfaction index 

Source: author’s own calculation. 

 
25 𝒮𝒮(𝛼𝛼 + 𝛽𝛽) ≥ 𝒮𝒮(𝛼𝛼) + 𝒮𝒮(𝛽𝛽) means super additivity, and 𝒮𝒮(𝛼𝛼 + 𝛽𝛽) ≤ 𝒮𝒮(𝛼𝛼) + 𝒮𝒮(𝛽𝛽) is sub-

additivity property.  
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Now, one can examine the formal definition and proof of translation invariance 
of a Lebesgue measure26. For instance, if 𝐸𝐸 ∈ 𝒫𝒫(ℝ), by adding 𝛼𝛼 ∈ ℝ gives as a new 
set 𝐸𝐸 + 𝛼𝛼 and the Lebesgue outer measure, which is 𝑚𝑚∗(𝐸𝐸) = 𝑚𝑚∗(𝐸𝐸 + 𝛼𝛼) = 
𝑚𝑚∗{𝑒𝑒 + 𝑎𝑎 ∶ 𝑒𝑒 ∈  𝐸𝐸 }, called the translation invariance of the Lebesgue outer measure.  

Theorem 1. Translation invariance of the Lebesgue outer measure: Let 
𝐸𝐸 ∈ 𝒫𝒫(ℝ) and 𝛼𝛼 ∈ ℝ and then 𝑚𝑚∗(𝐸𝐸 + 𝛼𝛼) = 𝑚𝑚∗(𝐸𝐸). 

Proof: Let (𝐼𝐼𝑛𝑛)𝑛𝑛=1∞  be a sequence of open intervals (an open interval is an interval 
that does not include endpoints). The open interval {𝑥𝑥:𝛼𝛼 < 𝑥𝑥 < 𝛽𝛽} is denoted (𝛼𝛼,𝛽𝛽) 
(Gemignani, 1990). Then (𝐼𝐼𝑛𝑛 + 𝛼𝛼 )𝑛𝑛=1∞  is a sequence of open intervals that cover 
𝐸𝐸 + 𝛼𝛼, and therefore 
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𝑚𝑚∗(𝐸𝐸 + 𝛼𝛼) ≤�ℓ(𝐼𝐼𝑛𝑛 + 𝛼𝛼) = �ℓ(𝐼𝐼𝑛𝑛)
∞

𝑛𝑛=1

∞

𝑖𝑖=1

  

Thus, for every sequence of open intervals (𝐼𝐼𝑛𝑛)𝑛𝑛=1 
∞ that cover 𝐸𝐸, one has that 

𝑚𝑚∗(𝐸𝐸 + 𝛼𝛼) ≤ ∑ ℓ(𝐼𝐼𝑛𝑛)∞
𝑛𝑛=1  and so 𝑚𝑚∗(𝐸𝐸 + 𝛼𝛼) ≤ 𝑚𝑚∗(𝐸𝐸) . Let  (𝐼𝐼𝑛𝑛)𝑛𝑛=1∞  be a sequence 

that covers 𝐸𝐸 + 𝛼𝛼 , then  (𝐼𝐼𝑛𝑛 − 𝛼𝛼)𝑛𝑛=1 
∞ is a sequence of open intervals that cover 𝐸𝐸, and 

thus 𝑚𝑚∗(𝐸𝐸) ≤ ∑ ℓ(𝐼𝐼𝑛𝑛 − 𝛼𝛼) = ∑ ℓ(𝐼𝐼𝑛𝑛)∞
𝑛𝑛=1

∞
𝑖𝑖=1 , and no ∀ (𝐼𝐼𝑛𝑛)𝑛𝑛=1∞  that cover 𝐸𝐸 + 𝛼𝛼 

which gives that 𝑚𝑚∗(𝐸𝐸) ≤ ∑ ℓ(𝐼𝐼𝑛𝑛)∞
𝑛𝑛=1  , and now 𝑚𝑚∗(𝐸𝐸) ≤ 𝑚𝑚∗(𝐸𝐸 + 𝛼𝛼). From 

𝑚𝑚∗(𝐸𝐸 + 𝛼𝛼) ≤ 𝑚𝑚∗(𝐸𝐸) and 𝑚𝑚∗(𝐸𝐸) ≤ 𝑚𝑚∗(𝐸𝐸 + 𝛼𝛼) one can conclude that 𝑚𝑚∗(𝐸𝐸) =
𝑚𝑚∗(𝐸𝐸 + 𝛼𝛼)∎. 

Theorem 2. Monotonicity of the Lebesgue measure: let 𝒜𝒜,ℬ ∈ 𝒫𝒫(ℝ), and if 
𝒜𝒜 ⊆ ℬ then 𝑚𝑚∗(𝒜𝒜) ≤ 𝑚𝑚∗(ℬ) . 

Proof: If  {𝐼𝐼𝑛𝑛 = 𝛼𝛼𝑛𝑛,𝛽𝛽𝑛𝑛}𝑛𝑛=1∞  such that ℬ ⊆ ⋃ 𝐼𝐼𝑛𝑛∞
𝑛𝑛=1 , hence 𝒜𝒜 ⊆ ⋃ 𝐼𝐼𝑛𝑛∞

𝑛𝑛=1  
and therefore: 
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��ℓ(𝐼𝐼𝑛𝑛):𝒜𝒜 ⊆�𝐼𝐼𝑛𝑛 ∧  {𝐼𝐼𝑛𝑛 = 𝛼𝛼𝑛𝑛,𝛽𝛽𝑛𝑛}𝑛𝑛=1∞  
∞

𝑖𝑖=1

∞

𝑖𝑖=1

�

⊇ ��ℓ(𝐼𝐼𝑛𝑛):ℬ ⊆�𝐼𝐼𝑛𝑛 ∧  {𝐼𝐼𝑛𝑛 = 𝛼𝛼𝑛𝑛,𝛽𝛽𝑛𝑛}𝑛𝑛=1∞  
∞

𝑖𝑖=1

∞

𝑖𝑖=1

� 

By the infimum or supremum properties of subsets of sets of real numbers, the 
previous implies that 𝑚𝑚∗(𝒜𝒜) ≤ 𝑚𝑚∗(ℬ) . 

 
26 Given open set 𝒮𝒮 = ∑ (𝛼𝛼𝑘𝑘 ,𝛽𝛽𝑘𝑘)𝑘𝑘 , then the Lebesgue measure is 𝜇𝜇𝐿𝐿(𝒮𝒮) = ∑ (𝛽𝛽𝑘𝑘 − 𝛼𝛼𝑘𝑘)𝑘𝑘 , and given 

a closed set (whose complement is an open set) 𝒮𝒮′ ≡ [𝛼𝛼,𝛽𝛽] − ∑ (𝛼𝛼𝑘𝑘 − 𝛽𝛽𝑘𝑘)𝑘𝑘  𝜇𝜇𝐿𝐿(𝒮𝒮′) = (𝛽𝛽 − 𝛼𝛼) −
∑ (𝛽𝛽𝑘𝑘 − 𝛼𝛼𝑘𝑘)𝑘𝑘 , see (Kestelman, 1960). 
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Corollary: {𝛼𝛼𝑛𝑛}𝑛𝑛=1∞  is a sequence of real numbers bounded below, then 
� inf
𝑘𝑘≥𝑛𝑛

{𝛽𝛽𝑘𝑘}�
𝑛𝑛=1

∞
 is an increasing sequence.  

Proof: Since {𝛼𝛼𝑛𝑛}𝑛𝑛=1∞  is bounded below, then the set {𝛽𝛽𝑘𝑘:𝑘𝑘 > 𝑛𝑛}𝑛𝑛=1∞ is bunded 
below ∀𝑛𝑛:𝑛𝑛 ∈ 𝑁𝑁 then: 

{𝛽𝛽𝑘𝑘:𝑘𝑘 > 1} ⊇ {𝛽𝛽𝑘𝑘:𝑘𝑘 > 1} ⊇ ⋯ 

This means that 𝑠𝑠𝑢𝑢𝑝𝑝{𝛽𝛽𝑘𝑘:𝑘𝑘 ≥ 1} ≤ 𝑠𝑠𝑢𝑢𝑝𝑝{𝛽𝛽𝑘𝑘:𝑘𝑘 ≥ 2} ≤ ⋯ 

which follows that �sup
𝑘𝑘≥𝑛𝑛

{𝛽𝛽𝑘𝑘}�
𝑛𝑛=1

∞
 is an increasing sequence, henceforth 𝑚𝑚∗(𝒜𝒜) ≤

𝑚𝑚∗(ℬ) ∎. 

8. Concluding remarks  

This paper attempted to make use of the prospect theory in economics, used by the 
authors to explain overbidding in first price auctions. This result is documented in the 
literature of auctions; in particular the phenomenon of overbidding was explained by 
risk averse bidders. It was proved in that the reference dependence (i.e. the value 
function depends on gains and losses relative to a status quo and not on final wealth 
positions as in expected utility theory), loss aversion, and risk seeking are important in 
explanation of overbidding and the cumulative prospect theory takes all these into 
account. This paper also proved that in asymmetric first price auctions, overbidding 
occurs if the reservation price or the item of the object of sale (value) is higher than 
the bidder’s valuation, and also when there exist underbidders since the PWF function 
is inverse S-shaped and bidders with a low valuation underbid as they are 
overconfident that they will win the auction. The reason behind underbidding is the 
overweighting interval of the inverse S-shaped PWF, which is the main reason that 
PWF cannot sufficiently explain overbidding. In the paper it was shown that the error 
return function and means squared error are convex, which is in line with the 
explanations of risk seeking individuals, preferring solutions to avoid losses. 
Translation invariance and satisfaction (certainty equivalent) were shown that are 
positive and homogenous, monotonicity was also proven and sub and super additive, 
which all imply the loss of risk aversion, and, hence overbidding.  
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Appendix 
Stochastic dominance in asymmetric FPA 

Definition 1. First-order stochastic dominance: ∀ 𝐹𝐹𝑖𝑖 ;∀𝐹𝐹𝑖𝑖 lotteries (auctions), 
𝐹𝐹 stochastically dominates 𝐹𝐹𝑖𝑖 if and only if the agent𝐹𝐹𝑖𝑖 ≳ 𝐹𝐹𝑖𝑖 under weakly increasing 
utility function 𝑢𝑢,where ∫ 𝑢𝑢(𝑥𝑥)𝑑𝑑𝐹𝐹𝑖𝑖 ≥ ∫ 𝑢𝑢(𝑥𝑥)𝑑𝑑𝐹𝐹𝑖𝑖 . 

Definition 2. First-order stochastic dominance: with cumulative distribution 
functions 𝐹𝐹𝑖𝑖 stochastically dominates 𝐹𝐹𝑖𝑖 if and only if ∀𝑥𝑥:𝐹𝐹𝑖𝑖(𝑥𝑥) ≤ 𝐹𝐹𝑖𝑖(𝑥𝑥). 

Theorem 3. The previous two definitions are equivalent.  
Proof Suppose that ∄:∀𝑥𝑥:𝐹𝐹𝑖𝑖(𝑥𝑥) ≤ 𝐹𝐹𝑖𝑖(𝑥𝑥), then ∃𝑥𝑥∗ → 𝐹𝐹𝑖𝑖(𝑥𝑥) > 𝐹𝐹𝑖𝑖(𝑥𝑥). Now let us 

define 𝑢𝑢 ≡ 1{𝑥𝑥>𝑥𝑥∗} by 𝑢𝑢(𝑥𝑥) = 1 if 𝑥𝑥 > 𝑥𝑥∗ or otherwise is 0. Thus 

equation 130 
∫ 𝑢𝑢(𝑥𝑥)𝑑𝑑𝐹𝐹𝑖𝑖 = 1 − 𝐹𝐹𝑖𝑖(𝑥𝑥∗) < 1 − 𝐹𝐹𝑖𝑖(𝑥𝑥∗) = ∫ 𝑢𝑢(𝑥𝑥)𝑑𝑑𝐹𝐹𝑖𝑖  

Now let us suppose that ∄:∫ 𝑢𝑢(𝑥𝑥)𝑑𝑑𝐹𝐹𝑖𝑖 ≥ ∫ 𝑢𝑢(𝑥𝑥)𝑑𝑑𝐹𝐹𝑖𝑖, in that case  
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∫ 𝑢𝑢�𝑦𝑦(𝑥𝑥)�𝑑𝑑𝐹𝐹𝑖𝑖�𝑦𝑦(𝑥𝑥)� = ∫ 𝑢𝑢�𝑦𝑦(𝑥𝑥)�𝑑𝑑𝐹𝐹𝑖𝑖�𝑦𝑦(𝑥𝑥)� ≥ ∫ 𝑢𝑢(𝑥𝑥)𝑑𝑑𝐹𝐹𝑖𝑖(𝑥𝑥) 

where by equality 𝑦𝑦(𝑥𝑥) = 𝐹𝐹𝑖𝑖−1𝐹𝐹𝑖𝑖(𝑥𝑥) and the inequality comes from 𝑢𝑢�𝑦𝑦(𝑥𝑥)� >
𝑢𝑢(𝑥𝑥);∀(𝑥𝑥) because 𝑦𝑦(𝑥𝑥) ≥ 𝑥𝑥 and 𝑢𝑢 is weakly increasing ∎.  

Definition 3. Second-order stochastic dominance: ∀ F ;∀G lotteries (auctions), 
F stochastically dominates G if and only if the agent F ≳ G under weakly increasing 
concave utility function 𝑢𝑢.  

Definition 4. ∀ 𝐹𝐹𝑖𝑖;∀𝐹𝐹𝑖𝑖. 𝐹𝐹𝑖𝑖 is a mean preserving spread of 𝐹𝐹𝑖𝑖 if and only if: 
𝑦𝑦 =  𝑥𝑥 + 𝜖𝜖 for some:𝑥𝑥 ∼ 𝐹𝐹𝑖𝑖; 𝑦𝑦 ∼ 𝐹𝐹𝑖𝑖 and 𝐸𝐸(𝜖𝜖|𝑥𝑥) = 0.  

Theorem 4: ∫ 𝑥𝑥𝑑𝑑𝐹𝐹𝑖𝑖 = ∫ 𝑦𝑦𝑑𝑑𝐹𝐹𝑖𝑖 , and the following are equivalent. 
1. ∫ 𝑢𝑢(𝑥𝑥)𝑑𝑑𝐹𝐹𝑖𝑖(𝑥𝑥) ≥ ∫ 𝑢𝑢(𝑥𝑥)𝑑𝑑𝐹𝐹𝑖𝑖(𝑥𝑥); 
2. 𝐹𝐹𝑖𝑖 is a MPS of 𝐹𝐹𝑖𝑖; 
3. ∀(𝑣𝑣 ≥ 0):∫ 𝐹𝐹𝑖𝑖(𝑥𝑥)𝑑𝑑𝑥𝑥 ≥ ∫ 𝐹𝐹𝑖𝑖(𝑥𝑥)𝑑𝑑𝑥𝑥 𝑐𝑐

𝑎𝑎
𝑐𝑐
𝑎𝑎  

Proof: 2 implies 1. One can write: 
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∫ 𝑢𝑢(𝑦𝑦)𝑑𝑑𝐹𝐹𝑖𝑖(𝑦𝑦) = ∫ 𝐸𝐸[𝑢𝑢(𝑥𝑥 + 𝜖𝜖)|𝑥𝑥]𝑑𝑑𝐹𝐹𝑖𝑖(𝑥𝑥) ≤ ∫ 𝑢𝑢[𝐸𝐸(𝑥𝑥 + 𝜖𝜖)|𝑥𝑥]𝑑𝑑𝐹𝐹𝑖𝑖(𝑥𝑥)
= ∫ 𝑢𝑢(𝑥𝑥)𝑑𝑑𝐹𝐹𝑖𝑖(𝑥𝑥) 

Now to show that 1 is equivalent to 3, define mapping: ℐ:ℝ → ℝ by ℐ(𝑣𝑣) =
∫ �𝐹𝐹𝑖𝑖(𝑥𝑥) − 𝐹𝐹𝑖𝑖(𝑥𝑥)�𝑐𝑐
𝑎𝑎 , clearly ℐ(𝑎𝑎) = 0; since 𝐹𝐹𝑖𝑖 and 𝐹𝐹𝑖𝑖 have same mean, now by 

applying integration by parts one obtains 
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∫ 𝑢𝑢(𝑥𝑥)𝑑𝑑 �𝐹𝐹𝑖𝑖(𝑥𝑥) − 𝐹𝐹𝑖𝑖(𝑥𝑥)� = ∫ 𝑢𝑢′′(𝑥𝑥)ℐ(𝑥𝑥)𝑑𝑑𝑥𝑥 

Hence, the first condition is true if the left hand side is non-negative ∀(𝑢𝑢) with 
𝑢𝑢′′(𝑥𝑥) ≤ 0. The latter holds if ℐ(𝑥𝑥) ≤ 0, so that for condition 3 it holds ∎. 

The relative strength ratio is a possible way of comparing bidder’s 𝑖𝑖 beliefs about 
his/her rival with bidder’s 𝑗𝑗 beliefs about the rival is through the relative strength ratio 
𝒫𝒫𝑖𝑖𝑖𝑖, see (Kirkegaard, 2009): 
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𝒫𝒫𝑖𝑖𝑖𝑖 ≡
𝐹𝐹𝑖𝑖(𝑣𝑣)
𝐹𝐹𝑖𝑖(𝑣𝑣) ;∀(𝑣𝑣):𝑣𝑣 ∈ (0, �̅�𝑣 ) 

First order stochastic dominance means that the ratio is strongly decreasing, 
meaning that 

equation 134 

𝑓𝑓𝑖𝑖(𝑣𝑣)
𝐹𝐹𝑖𝑖(𝑣𝑣) >

𝑓𝑓𝑖𝑖(𝑣𝑣)
𝐹𝐹𝑖𝑖(𝑣𝑣) ;∀(𝑣𝑣):𝑣𝑣 ∈ (0, �̅�𝑣) 

therefore 𝐹𝐹𝑖𝑖(𝑣𝑣) dominates 𝐹𝐹𝑖𝑖(𝑣𝑣) in terms of invert hazard rate. The comparison of the 
bidder’s payoffs is given as: 
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𝑅𝑅𝑢𝑢𝑖𝑖,𝑖𝑖(𝑣𝑣) = �𝑐𝑐−𝑏𝑏𝑖𝑖(𝑐𝑐)�ℋ�𝑏𝑏𝑖𝑖(𝑐𝑐)�𝑝𝑝𝑖𝑖
𝑗𝑗(𝑐𝑐)

�𝑐𝑐−𝑏𝑏𝑗𝑗(𝑐𝑐)�ℋ�𝑏𝑏𝑗𝑗(𝑐𝑐)�𝑞𝑞𝑗𝑗
𝑖𝑖(𝑐𝑐)

;𝑅𝑅𝑢𝑢𝑖𝑖,𝑖𝑖(𝑣𝑣) = 𝐹𝐹𝑗𝑗(𝑐𝑐)
𝐹𝐹𝑖𝑖(𝑐𝑐). 

where in previous expression, 𝑝𝑝𝑖𝑖
𝑖𝑖(𝑣𝑣) and 𝑞𝑞𝑖𝑖𝑖𝑖(𝑣𝑣) are the respective probabilities of 

winning the auction. The bidders are equally well-off at �̅�𝑣 so that 𝑅𝑅𝑢𝑢𝑖𝑖,𝑖𝑖(𝑣𝑣) = 1. 
Whereas in the previous expression 
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𝑝𝑝𝑖𝑖(𝑣𝑣) = 𝑣𝑣 − �
𝑝𝑝𝑖𝑖
𝑖𝑖(𝑥𝑥)

𝑝𝑝𝑖𝑖
𝑖𝑖(𝑣𝑣)

1

0
𝑑𝑑𝑥𝑥; 𝑝𝑝𝑖𝑖(𝑣𝑣) = 𝑣𝑣 − �

𝑞𝑞𝑖𝑖𝑖𝑖(𝑥𝑥)
𝑞𝑞𝑖𝑖𝑖𝑖(𝑣𝑣)

𝑑𝑑𝑥𝑥
1

0
 

Proposition 1. The bid function with the probability weighting is 
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𝑝𝑝𝑖𝑖∗(𝑣𝑣) = 𝑣𝑣𝑖𝑖 −
∫ 𝑤𝑤�𝐹𝐹𝑖𝑖(𝑦𝑦)�𝑑𝑑𝑦𝑦𝑐𝑐𝑖𝑖
0
𝑤𝑤(𝐹𝐹(𝑣𝑣𝑖𝑖)

 

The result holds if all the bidders subjectively weight probabilities with the same 
inverse S-shaped PWF.  
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Proof  FOC with respect to 𝑝𝑝𝑖𝑖∗(𝑣𝑣) is: 
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𝜕𝜕𝑤𝑤(𝐹𝐹�𝛽𝛽−(𝑝𝑝)�
𝜕𝜕𝛽𝛽−1(𝑝𝑝)

𝜕𝜕𝛽𝛽−1(𝑝𝑝)
𝜕𝜕𝑝𝑝

(𝑣𝑣 − 𝑝𝑝)−𝑤𝑤�𝛽𝛽−1(𝑝𝑝)� = 0 

In a symmetric equilibrium 𝑝𝑝 = 𝛽𝛽(𝑣𝑣𝑖𝑖) and 𝛽𝛽−(𝑝𝑝) = 𝑣𝑣𝑖𝑖: and 
𝜕𝜕
𝜕𝜕𝑐𝑐𝑖𝑖

 �𝑤𝑤𝐹𝐹(𝑣𝑣𝑖𝑖)𝛽𝛽(𝑣𝑣𝑖𝑖)� = 𝑣𝑣𝑖𝑖
𝜕𝜕𝑤𝑤 �𝐹𝐹(𝑤𝑤𝑖𝑖)�

𝜕𝜕𝑐𝑐𝑖𝑖
, hence 

equation 139 

𝛽𝛽∗(𝑣𝑣𝑖𝑖) =
1

𝑤𝑤(𝐹𝐹(𝑣𝑣𝑖𝑖)
� 𝑦𝑦

𝜕𝜕𝑤𝑤�𝐹𝐹(𝑦𝑦)�
𝜕𝜕𝑦𝑦

𝑐𝑐𝑖𝑖

0
𝑑𝑑𝑦𝑦 = 𝑣𝑣𝑖𝑖 −

∫ 𝑤𝑤�𝐹𝐹𝑖𝑖(𝑦𝑦)�𝑑𝑑𝑦𝑦𝑐𝑐𝑖𝑖
0
𝑤𝑤(𝐹𝐹(𝑣𝑣𝑖𝑖)

 ∎ 

Proposition 2. Take into consideration Prelec’s (1998) weighting function 
𝑤𝑤(𝑝𝑝) = 𝑒𝑒𝑥𝑥𝑝𝑝{−(− ln 𝑝𝑝)𝛼𝛼};𝛼𝛼 ∈ (0,1), and teh bidders’ weight probabilities with 
inverse S-shaped PWF that is 

equation 140 

� 𝑒𝑒−(𝑛𝑛−1)𝛼𝛼(−𝜕𝜕𝑛𝑛𝜕𝜕)𝛼𝛼𝑑𝑑𝑦𝑦 ≤
1
𝑛𝑛

1

0
 

In addition, the following applies regarding the critical valuation 
∫ 𝑒𝑒−(𝑛𝑛−1)𝛼𝛼(−𝑙𝑙𝑛𝑛𝑙𝑙)𝛼𝛼𝑑𝑑𝜕𝜕𝑎𝑎∗
0
𝑒𝑒−(𝑛𝑛−1)𝛼𝛼(−𝑙𝑙𝑛𝑛𝑙𝑙)𝛼𝛼 = 𝑐𝑐∗

𝑛𝑛
; an inverse S-shaped PWF causes underbidders with low 

valuations to overestimate their chances of winning the auction by which their response 
would be to lower their bids. Thus𝑣𝑣𝐵𝐵∗ ∈ (0,1) such that 𝛽𝛽𝐵𝐵𝑈𝑈(𝑣𝑣𝐵𝐵∗ ) = 𝛽𝛽𝑅𝑅𝑁𝑁𝑈𝑈 (𝑣𝑣𝐵𝐵∗ ) and any 
bidder with valuation 𝑣𝑣 underbids if 𝑣𝑣 < 𝑣𝑣𝐵𝐵∗ , and the bidder overbids if 𝑣𝑣 > 𝑣𝑣𝐵𝐵∗ .  

Proof: The bidder with valuation 1 overbids, taking the first derivative 𝛽𝛽𝐵𝐵𝑈𝑈 with 
respect to 𝛼𝛼 
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(1 − 𝑛𝑛)� 𝑒𝑒(−(𝑛𝑛−2)(−𝜕𝜕𝑛𝑛𝜕𝜕)𝛼𝛼)(−𝜕𝜕𝑛𝑛𝜕𝜕)𝛼𝛼𝜕𝜕𝑒𝑒
−(−𝑙𝑙𝑛𝑛𝑙𝑙)𝛼𝛼

𝜕𝜕𝛼𝛼 
1

0
𝑑𝑑𝑦𝑦 < 0 

At the maximum valuation 𝛽𝛽𝐵𝐵𝑈𝑈(1) = 𝛽𝛽𝑅𝑅𝑁𝑁𝑈𝑈 (1), when 𝛼𝛼 = 1 , then 𝛽𝛽𝐵𝐵𝑈𝑈(1) >
𝛽𝛽𝑅𝑅𝑁𝑁𝑈𝑈 (1) when 𝛼𝛼 ∈ (0,1), now the bidder with valuation 𝑣𝑣�(𝑝𝑝) underbids 𝛽𝛽𝐵𝐵𝑈𝑈(𝑣𝑣�𝐵𝐵) <
𝛽𝛽𝑅𝑅𝑁𝑁𝑈𝑈 (𝑣𝑣�𝐵𝐵), and since both 𝛽𝛽𝐵𝐵𝑈𝑈;𝛽𝛽𝑅𝑅𝑁𝑁𝑈𝑈  are continuous ∃𝑣𝑣𝐵𝐵∗ :𝛽𝛽𝐵𝐵𝑈𝑈(𝑣𝑣∗) = 𝛽𝛽𝑅𝑅𝑁𝑁𝑈𝑈 (𝑣𝑣∗), then there 
exists unique 𝑣𝑣 with 𝛽𝛽𝐵𝐵𝑈𝑈(𝑣𝑣) − 𝛽𝛽𝑅𝑅𝑁𝑁𝑈𝑈 (𝑣𝑣) = 0; this expression is zero when 𝑣𝑣 = 0 , it is 
negative when 𝑣𝑣 = 1

𝑒𝑒
 , and positive when 𝑣𝑣 = 1, and thus any bidder with valuation 𝑣𝑣 

underbids if 𝑣𝑣 < 𝑣𝑣𝐵𝐵∗ , and the bidder overbids if 𝑣𝑣 > 𝑣𝑣𝐵𝐵 
∗ ∎ (see also (Keskin, 2015)). 
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Teoria perspektywy i aukcje pierwszej ceny: wyjaśnienie przebijania 

Streszczenie: W artykule podjęto próbę wykorzystania teorii perspektywy do wyjaśnienia przebijania 
cen w przetargach pierwszej ceny. Standardowym wynikiem w literaturze związanej z aukcjami jest to, 
że licytanci przebijają ceny, ale funkcje ważenia prawdopodobieństwa są nieliniowe, jak w teorii 
perspektywy, więc nie tylko mają tendencję do zaniżania wagi prawdopodobieństw wygrania aukcji, 
ale także przeważania, tak że są licytanci przebijający i oferenci słabsi. Artykuł ten dowodzi, że do 
pewnego stopnia nieliniowe funkcje ważenia wyjaśniają zawyżanie neutralnej pod względem ryzyka 
wyceny równowagi Nasha (RNNE). Ponadto zastosowano spójne miary ryzyka, takie jak ekwiwalent 
pewności i niezmienniczość translacji, aby wykazać awersję do strat wśród oferentów zgodnie z teorią 
perspektywy, wypukłość została również potwierdzona subaddytywnością, monotonicznością i dodat-
nią jednorodnością. 

Słowa kluczowe: kumulatywna teoria perspektywy, aukcje pierwszej ceny, przelicytowanie, funkcja 
ważenia prawdopodobieństwa, odwrotne funkcje S-kształtne. 
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