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Abstract: Retail is a profit-driven, highly competitive industry. Customers expect retailers to provide 
appropriate assortment sets and excellent product visibility. The aim of this study was to develop and 
examine two models for optimising category-level shelf space management that maximise a retailer’s 
profit. The authors developed two shelf space allocation problem models. The first model combines 
three sets of constraints: shelf, product, and product group constraints, while the second model 
enlarges the first with the multi-shelves constraints. The study showed that this approach gives an 
optimal solution in a very short time (approximately 3 seconds on average and less than a second in 
93 of the 134 instances for the first, and in 84 of the 146 instances in the second problem) for large-
scale instances, which in most of the test cases is even less than a second. First, non-linear formulations 
of both problems were presented. Next, the authors proposed to use and adjust linearization 
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techniques which allow transforming both problems into linear ones, thus obtaining the optimal 
solutions. Finally, both problems were solved using the CPLEX solver, the computational results were 
provided. 

Keywords: linear programming, merchandising, retailing, shelf space allocation, shelf space 
allocation problems (SSAP) 

1. Introduction 

The final aim of shelf space planning is to maximise profit by assigning products to shelves while 
maintaining shelf space limitations and allocation limits. The goal of this planning assignment is to 
distribute the limited shelf space in a retail store among the many products to be displayed. 

Real-world shelf space allocation problems (SSAP) come to light due to the conflict between scarce 
shelf space and the large number of products that need to be placed there. Empirical studies and shelf 
space optimisation models have attracted attention in recent years because of the continuous 
competition for scarce shelf space among different manufacturers. In consequence, the increased 
amount of products and wider customer demand should be thoroughly comprehended, which leads 
to the need for a complete understanding of customer requirements and suggesting appropriate 
merchandising tactics by the retailers.  

A growing stream of research papers, models and solves the SSAP, considering space and cross-space 
elasticity effects. Yet, due to the combinatorial complexity caused by them, the majority of solution 
approaches cannot be used for extensive practical implementation. A large body of literature points 
the space elasticity as a measurement of increased responsiveness of sales if more space is given to  
a product (Curhan, 1972; Chen and Lin, 2007; Chandon et al., 2009). Cross-space elasticity is  
a measurement of the dependency between neighbouring products; it is assumed to be positive for 
complementary or similar products and negative for substitutable products (Corstjens and Doyle, 
1981; Chen and Lin, 2007). Schaal and Hübner (2017) concluded that cross-space effects have a minor 
impact on the allocation of products on shelves, therefore they can be disregarded in SSAP empirical 
and modelling research. Furthermore, the empirical measurement of cross-space elasticity is costly 
and very complex (Bianchi-Aguiar, 2015; Schaal and Hübner, 2017). 

Some scientists have examined product grouping and categorisation effects. Bianchi-Aguiar et al. 
(2017) categorised products into families and studied their allocation into blocks in a multi-level 
hierarchical planogram structure. Anic, Radas and Lim (2010), Desrochers and Nelson (2006), Elbers 
(2016) studied the dependencies between the product on shelf location and visual merchandising, the 
customers buying behaviour and product categorisation. Czerniachowska and Hernes (2021) proposed 
horizontal and vertical product grouping based on product sales potential, so that the products could 
be placed on the shelf not lower than their sales potential. 

Other authors have studied customers’ purchasing behaviour. Inside stores, in-store elements that 
increase product awareness and interest have a significant impact on client demand. Parket al. (2015) 
proposed a measure of merchandising awareness while studying the impact of customer visual 
perception on customer’s purchase intention and brand recognition. Desrochers and Nelson (2006) 
concluded that customer behaviour is a significant factor in the category management process. 
Furthermore, they showed that customers’ choice of the product is determined by the product 
category to which it is assigned and the store location. Gabrielli and Cavazza (2014) studied brand 
recognition depending on product location on low, medium and high shelf levels as well as the location 
on the end of the aisle. They suggested that the store and shelf location is the strong factor in brand 
awareness and customers’ buying decisions. Czerniachowska (2021) enriched the known SSAP models 
with local and regional, convenience and complementary products that could be placed in the 
appropriate shelf segment. The shelf segments were of flexible sizes. 
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One of the key roles of merchandising in performing commercial decisions is considering product 
brands, colours, sizes, price, and the movement which attracts customers and generates profit for the 
retailer. To the best of the authors’ knowledge, the recent literature neglects such merchandising 
tactics, and one of its key limitations is that it does not consider the different vertical shelf levels with 
regard to product movement, which is reflected in the current research. 

Another limitation of the SSAP literature is neglecting the possibility of the product being placed above 
the main facings. The so-called cappings and nestings were first presented in the studies by 
Czerniachowska and Hernes (2020, 2021) and Czerniachowska (2021). Despite the popularity of 
planograms, where products remaining before shelf replenishment are placed above the main facings 
in another orientation (capping), which then allows putting more products on the shelves, other 
authors did not formulate the model which investigates such an allocation method. The same applies 
to the nesting effect. 

Therefore the contribution of this research is the following: 

• formulation of SSAPs involving merchandising rules based on simultaneous product categorisation 
of their sales potentials or movement, 

• consideration of the allocation above the facings on the top, such as cereal boxes (i.e. capping), 
and allocation above the facings inside them, such as cups and plates (i.e. nesting), 

• deepening the knowledge related to current SSAP with new ways of the formulation of cappings 
and nestings parameters in non-linear and linear SSAPs.  

The aim of this paper was to propose two practical approaches for the SSAP, including merchandising 
rules regulated by the sales potentials shelf levels and product movement, different orientation 
possibilities, as well as cappings and nestings parameters. The first problem (SSAP-1) includes shelf, 
product, and product groups constraints. The second problem (SSAP-2) includes all the constraints 
from the first one and adds the multi-shelves constraints. In both models, the product item is 
represented by the facings, cappings and nestings. Next, the authors modelled non-linear integer 
SSAPs, and using the linearization technique, transformed some constraints into linear integer SSAPs 
and found an optimal solution to these problems. The experiments in the CPLEX solver were performed 
on different problem sizes, inspired by retail practice. The proposed methods may help the retailers 
while performing complex shelf space operations and to reduce the amount of time spent on manual 
work. The research was motivated by the large impact of shelf space allocation on store efficiency. 

The remainder of this paper is structured as follows. The problem definition is presented in Section 2. 
In Section 3, the non-linear problem formulation and the linearization technique, are given. Section 4 
presents the results of computational experiments, and the article is concluded in Section 5. 

2. Problem definition 

Retailers feel the necessity of efficient modelling approaches to satisfy customer requirements and perform 
effective decision-making operations. Retailers must assign the shelf space to the items included in the 
assortment that must be placed on planogram shelves. Usually, in real stores, planograms help retailers to 
perform visual shelf monitoring, which results in better planning of the scarce shelf space, out-of-stock 
monitoring, brand visibility, promotion efficiency and also customer satisfaction. Furthermore, planograms 
make it easier for retailers to gather data for correct merchandising decisions based on more accurate 
business calculations that drive in-store sales and retailers’ profit. Practical, relevant shelf space 
optimisation models help retailers to find the optimal planogram. 

The problem can be formulated as follows. There are a given number of products P  which must be 
allocated on S  shelves of a planogram in a retail store. Products P  are assigned to K  vertical 
category levels depending on their sales potential. Shelves S  are also assigned to the vertical category 
levels. The sales potential category levels are horizontal. The more expensive or branded the product 
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is (i.e. the higher the sales potential), the higher must be the category level of the shelf where it will 
be placed. It is allowed to place the products on the shelves with higher or equal category levels 
compared to their category level, but not on the shelves with lower category levels. This illustrated the 
retail case when the more expensive or branded products which have higher sales potential are placed 
on better shelves (higher shelves, eye-level shelves), the cheaper or more frequently bought products 
can be placed on lower shelves and also on the higher ones, whereas branded products cannot be 
placed on lower shelves. 

Fig. 1 shows the possible allocations of product sales potential categories on different shelf levels. 
Table 1 describes the retailers’ products on shelves with allocating rules. There is a planogram with 
shelves indicated as 10, 20, 30 sales potentials (white) and products also assigned to 10, 20, 30 sales 
potentials (coloured). Products with a sales potential 10 can be placed on the shelves indicated as 10, 
20, 30. Otherwise, products with a sales potential of 30 cannot be placed on the shelves for other sales 
potential category levels. Next, products with a sales potential of 20 can be placed on shelves marked 
as 20 and 30. In this example, interval 10 in sales potentials categories is chosen for practical reasons 
because frequently, temporary or seasonal assortment (e.g. “Christmas” or “Back to School”) must be 
sold during a short period of time. Hence, there is no reason to reassign all general assortments to 
other categories, it is easier to assign temporary products to the sales potential category, e.g. 15 or 
any other between the left 10-number interval. 

 
Fig. 1. Planogram with the allocation of sales potential categories: white numbers – sales potential of shelves; 
coloured numbers – sales potential of products which are placed on the appropriate shelf levels – the darker 
the colour, the higher the sales potential of the product; different products have a different background. 

Source: authors’ work. 

Table 1. Sales potential category allocation rules 

  Product sales potential category level 

  10 20 30 

Shelf sales potential category level 

30   ● 

20  ● ● 

10 ● ● ● 

Source: authors’ work. 

The product can be placed on the shelf in two orientations – front or side. Generally, each product can 
be placed on the shelf in its main front orientation, but some products depending on their packaging, 
can be rotated 90 degrees and can be placed on the shelf in its secondary side orientation. Obviously, 
for front-oriented products, their width is taken as a linear parameter, whereas for side-oriented 
products, their depth is a linear parameter. Similar substitutable products with the same features such 
as type, purpose, taste, etc. can be grouped into clusters and must be placed on the same shelf in order 
to make it easier for the customers to switch to a similar product if their preferred product is out-of-
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stock or if there is a promotion of a similar product. Generally, the retailer can control out-of-stock 
situations by setting the supply limit parameter of the product 𝑝𝑝𝑗𝑗𝑠𝑠, which determines the maximum 
possible number of product items.  

According to Czerniachowska and Hernes (2020, 2021) and Czerniachowska (2021), depending on the 
product packaging or its physical characteristics, the product item should be referred not only to one 
facing of the product but also to the possible capping or nesting of the product item. The capped unit 
is typically the top unit placed on top of the main units (e.g. for a box of cereal or tea). The nested unit 
is the unit above and inside the main unit (e.g. for coffee cups, plates, saucers). Parameters 𝑐𝑐𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 and 
𝑛𝑛𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 restrict the maximum possible cappings and nestings on vertical dimension, which can be placed 
above the main facings without destroying it, and to ensure the stable vertical placement of cappings 
and nestings. Obviously, the total number of items of the product equals the sum of facings, cappings 
and nestings. Czerniachowska and Hernes (2020, 2021) and Czerniachowska (2021) shows the cappings 
and nestings allocation methods. 

 
Fig. 2. Cappings allocation 
Source: authors’ work based on Czerniachowska (2021). 

 
Fig. 3. Nestings allocation 

Source: authors’ work based on Czerniachowska (2021). 
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The authors used the variables and parameters listed below. The subscripts indicate a variable’s indices, 
represent a variable’s description or mnemonics, and should not be read as indices. M – m  

Parameters and indices: 

𝐾𝐾 – total number of category levels, 
S – total number of shelves, 
𝑃𝑃 – total number of products, 
𝑘𝑘 – category level index, 𝑘𝑘 = 1, . . . ,𝐾𝐾, 
𝑖𝑖 – shelf index, 𝑖𝑖 = 1, . . . , 𝑆𝑆, 
𝑗𝑗 – product index, 𝑗𝑗 = 1, . . . ,𝑃𝑃, 

𝑟𝑟 = �0, for front orientation 
1, for side orientation � – orientation index. 

Shelf parameters: 

𝑠𝑠𝑖𝑖𝑤𝑤 – width of shelf 𝑖𝑖, 
𝑠𝑠𝑖𝑖𝑑𝑑 – depth of shelf 𝑖𝑖, 
𝑠𝑠𝑖𝑖ℎ  – height of shelf 𝑖𝑖, 
𝑠𝑠𝑖𝑖𝑘𝑘  – category of shelf 𝑖𝑖. 

Product parameters: 

𝑝𝑝𝑗𝑗𝑖𝑖𝑤𝑤  – width or depth of product j  on orientation 𝑟𝑟, 

𝑝𝑝𝑗𝑗𝑖𝑖𝑤𝑤 = �
𝑝𝑝𝑗𝑗0𝑤𝑤 , if 𝑟𝑟 = 0, width for front orientation 
𝑝𝑝𝑗𝑗1𝑤𝑤 ,  if 𝑟𝑟 = 1, depth for side orientation �, 

𝑝𝑝𝑗𝑗ℎ – height of product 𝑗𝑗, 
𝑝𝑝𝑗𝑗𝑠𝑠 – supply limit of product 𝑗𝑗, 
𝑝𝑝𝑗𝑗𝑢𝑢 – unit profit of product 𝑗𝑗, 
𝑝𝑝𝑗𝑗𝑘𝑘 – sales potential category level of product 𝑗𝑗, 
𝑝𝑝𝑗𝑗𝑛𝑛 – nesting height of product 𝑗𝑗, 𝑝𝑝𝑗𝑗𝑛𝑛 ≤ 𝑝𝑝𝑗𝑗ℎ, or 𝑝𝑝𝑗𝑗𝑛𝑛 = 0 if product cannot be nested, 

𝑝𝑝𝑗𝑗𝑜𝑜 = �1, if side orientation is available for product 𝑗𝑗
0,    otherwise � – orientation binary parameter, 

𝑝𝑝𝑗𝑗𝑐𝑐 – cluster of product 𝑗𝑗, 
𝑓𝑓𝑗𝑗𝑚𝑚𝑖𝑖𝑛𝑛 – minimum number of facings of product 𝑗𝑗, 
𝑓𝑓𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 – maximum number of facings of product 𝑗𝑗, 
𝑐𝑐𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 – maximum number of cappings per facings group of product 𝑗𝑗, 
𝑛𝑛𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 – maximum number of nestings of one facing of product 𝑗𝑗. 

Decision variables: 

𝛼𝛼𝑗𝑗 = �
0, if product 𝑗𝑗 is on front orientation 
1, if product 𝑗𝑗 is on side orientation � – orientation of product 𝑗𝑗, 

𝛼𝛼𝑗𝑗 ∈ {0,1} for all 𝑗𝑗 = 1, . . . ,𝑃𝑃, 

𝑢𝑢𝑖𝑖𝑗𝑗𝑖𝑖 = �1, if product 𝑗𝑗 is placed on shelf 𝑖𝑖 on orientation 𝑟𝑟
0, otherwise � – product placement binary variable, 

𝑢𝑢𝑖𝑖𝑗𝑗𝑖𝑖 ∈ {0,1} for all 𝑖𝑖 = 1, . . . , 𝑆𝑆, 𝑗𝑗 = 1, . . . ,𝑃𝑃, 𝑟𝑟 ∈ {0,1}, 
𝑎𝑎𝑗𝑗𝑖𝑖 – lower shelf number where the product is placed, 
𝑏𝑏𝑗𝑗𝑖𝑖 – upper shelf number where the product is placed, 
𝑥𝑥𝑖𝑖𝑗𝑗𝑖𝑖  – number of facings of product 𝑗𝑗 on shelf 𝑖𝑖 on orientation 𝑟𝑟, 
𝑥𝑥𝑖𝑖𝑗𝑗𝑖𝑖 = {𝑓𝑓𝑗𝑗𝑚𝑚𝑖𝑖𝑛𝑛 …𝑓𝑓𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚}  for all 𝑖𝑖 = 1, . . . , 𝑆𝑆, 𝑗𝑗 = 1, . . . ,𝑃𝑃, 𝑟𝑟 ∈ {0,1}, 
𝑦𝑦𝑖𝑖𝑗𝑗𝑖𝑖  – number of cappings of product 𝑗𝑗 on shelf 𝑖𝑖 on orientation 𝑟𝑟, 
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𝑦𝑦𝑖𝑖𝑗𝑗𝑖𝑖  – the number of horizontal cappings of product 𝑗𝑗 on shelf 𝑖𝑖 on orientation 𝑟𝑟, 
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 for all 𝑖𝑖 = 1, . . . , 𝑆𝑆, 𝑗𝑗 = 1, . . . ,𝑃𝑃, 𝑟𝑟 ∈ {0,1}, 

𝑧𝑧𝑖𝑖𝑗𝑗𝑖𝑖  – the number of nestings of product j  on shelf 𝑖𝑖 on orientation 𝑟𝑟, 
𝑧𝑧𝑖𝑖𝑗𝑗𝑖𝑖 = {0. . .𝑛𝑛𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝑓𝑓𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚} for all 𝑖𝑖 = 1, . . . , 𝑆𝑆, 𝑗𝑗 = 1, . . . ,𝑃𝑃, 𝑟𝑟 ∈ {0,1}. 

In the this research, the authors took into consideration one (top) facings row with cappings or 
nestings above it. The facings in a vertical and in a depth-dimension filling the possible shelf space 
in height and depth were not considered. Shelf height 𝑠𝑠𝑖𝑖ℎ  and shelf depth capacity 𝑠𝑠𝑖𝑖𝑑𝑑 was taken with 
regard to the first visible facings row. The task was to define the quantity number of facings 𝑥𝑥𝑖𝑖𝑗𝑗𝑖𝑖, 
cappings 𝑦𝑦𝑖𝑖𝑗𝑗𝑖𝑖 and nestings 𝑧𝑧𝑖𝑖𝑗𝑗𝑖𝑖  of product 𝑗𝑗 on orientation 𝑟𝑟 which was placed on shelf 𝑖𝑖 with regard 
to the shelf, product, orientation and product group constraints, with the goal of maximising the 
retailers’ profit. The horizontal cappings decision variable 𝑦𝑦𝑖𝑖𝑗𝑗𝑖𝑖  ensures the correct calculation of the 
total number of cappings. Product placement binary decision variable 𝑢𝑢𝑖𝑖𝑗𝑗𝑖𝑖  shows if the product 
physically exists on the shelf. Lower 𝑎𝑎𝑗𝑗𝑖𝑖 and upper 𝑏𝑏𝑗𝑗𝑖𝑖 shelf numbers are used for products that are 
placed on multiple shelves. 

3. Problem formulation 
The linear integer model can then be formulated as follows: 

 𝑚𝑚𝑎𝑎𝑥𝑥∑ ∑ ∑ 𝑝𝑝𝑗𝑗𝑢𝑢(𝑥𝑥𝑖𝑖𝑗𝑗𝑖𝑖 + 𝑦𝑦𝑖𝑖𝑗𝑗𝑖𝑖 +1
𝑖𝑖=0 𝑧𝑧𝑖𝑖𝑗𝑗𝑖𝑖)𝑆𝑆

𝑖𝑖=1
𝑃𝑃
𝑗𝑗=1  (1) 

subject to: 

3.1. Constraints in SSAP-1 

3.1.1. Shelf constraints 

shelf width ∑ ∑ 𝑝𝑝𝑗𝑗𝑖𝑖𝑤𝑤𝑥𝑥𝑖𝑖𝑗𝑗𝑖𝑖1
𝑖𝑖=0

𝑃𝑃
𝑗𝑗=1 ≤ 𝑠𝑠𝑖𝑖𝑤𝑤 for all 𝑖𝑖 = 1, . . . , 𝑆𝑆 (2) 

shelf depth: 

for front orientation  𝑥𝑥𝑖𝑖𝑗𝑗0 = 0 for all 𝑖𝑖 = 1, . . . , 𝑆𝑆, 𝑗𝑗 = 1, . . . ,𝑃𝑃, 𝑝𝑝𝑗𝑗1𝑤𝑤 > 𝑠𝑠𝑖𝑖𝑑𝑑  (3) 

for side orientation 𝑥𝑥𝑖𝑖𝑗𝑗1 = 0 for all 𝑖𝑖 = 1, . . . , 𝑆𝑆, 𝑗𝑗 = 1, . . . ,𝑃𝑃, 𝑝𝑝𝑗𝑗0𝑤𝑤 > 𝑠𝑠𝑖𝑖𝑑𝑑 (4) 

product height 𝑥𝑥𝑖𝑖𝑗𝑗𝑖𝑖 = 0 for all 𝑖𝑖 = 1, . . . , 𝑆𝑆, 𝑗𝑗 = 1, . . . ,𝑃𝑃, 𝑟𝑟 ∈ {0,1}, 𝑝𝑝𝑗𝑗ℎ > 𝑠𝑠𝑖𝑖ℎ  (5) 

3.1.2. Product constraints 

supply limit ∑ ∑ 𝑥𝑥𝑖𝑖𝑗𝑗𝑖𝑖 + 𝑦𝑦𝑖𝑖𝑗𝑗𝑖𝑖 + 𝑧𝑧𝑖𝑖𝑗𝑗𝑖𝑖1
𝑖𝑖=0

𝑆𝑆
𝑖𝑖=1 ≤ 𝑝𝑝𝑗𝑗𝑠𝑠 for all 𝑗𝑗 = 1, . . . ,𝑃𝑃 (6) 

minimum and maximum number of facings  

 𝑓𝑓𝑗𝑗min ≤ ∑ ∑ 𝑥𝑥𝑖𝑖𝑗𝑗𝑖𝑖 ≤ 𝑓𝑓𝑗𝑗max1
𝑖𝑖=0

𝑆𝑆
𝑖𝑖=1  for all 𝑗𝑗 = 1, . . . ,𝑃𝑃 (7) 

maximum number of cappings  

 �
𝑦𝑦𝑖𝑖𝑗𝑗𝑖𝑖 ≤ 𝑐𝑐𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝑦𝑦𝑖𝑖𝑗𝑗𝑖𝑖

𝑦𝑦𝑖𝑖𝑗𝑗𝑖𝑖 ≤ �
𝑠𝑠𝑖𝑖
ℎ−𝑝𝑝𝑗𝑗

ℎ

𝑝𝑝𝑗𝑗𝑗𝑗
𝑤𝑤 � ⋅ 𝑦𝑦𝑖𝑖𝑗𝑗𝑖𝑖

 for all 1,...,i S= , 1,...,j P= , {0,1}r∈  (8) 
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maximum number of horizontal cappings  

 𝑝𝑝𝑗𝑗ℎ𝑦𝑦𝑖𝑖𝑗𝑗𝑖𝑖 ≤ 𝑝𝑝𝑗𝑗𝑖𝑖𝑤𝑤𝑥𝑥𝑖𝑖𝑗𝑗𝑖𝑖  for all 𝑖𝑖 = 1, . . . , 𝑆𝑆, 𝑗𝑗 = 1, . . . ,𝑃𝑃, 𝑟𝑟 ∈ {0,1} (9) 

maximum number of nestings  

 �
𝑧𝑧𝑖𝑖𝑗𝑗𝑖𝑖 ≤ 𝑛𝑛𝑗𝑗

𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑗𝑗𝑗𝑗 ∙ 𝑥𝑥𝑖𝑖𝑗𝑗𝑖𝑖

𝑧𝑧𝑖𝑖𝑗𝑗𝑖𝑖 ≤ �
𝑠𝑠𝑖𝑖
ℎ−𝑝𝑝𝑗𝑗

ℎ

𝑝𝑝𝑗𝑗
𝑛𝑛 � ⋅ 𝑥𝑥𝑖𝑖𝑗𝑗𝑖𝑖

 for all 𝑖𝑖 = 1, . . . , 𝑆𝑆, 𝑗𝑗 = 1, . . . ,𝑃𝑃 (10) 

3.1.3. Orientation constraints 

side orientation is possible  

 𝛼𝛼𝑗𝑗 ≤ 𝑝𝑝𝑗𝑗𝑜𝑜 for all 𝑗𝑗 = 1, . . . ,𝑃𝑃 (11) 

only one orientation is possible: 

 �
𝛼𝛼𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗0 = 0
(1 − 𝛼𝛼𝑗𝑗)𝑥𝑥𝑖𝑖𝑗𝑗1 = 0 for all 𝑖𝑖 = 1, . . . , 𝑆𝑆, 𝑗𝑗 = 1, . . . ,𝑃𝑃 (12) 

 �
𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑗𝑗0 = 0
(1 − 𝛼𝛼𝑗𝑗)𝑦𝑦𝑖𝑖𝑗𝑗1 = 0 for all 𝑖𝑖 = 1, . . . , 𝑆𝑆, 𝑗𝑗 = 1, . . . ,𝑃𝑃 (13) 

 �
𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑗𝑗0 = 0
(1 − 𝛼𝛼𝑗𝑗)𝑦𝑦𝑖𝑖𝑗𝑗1 = 0 for all 1,...,i S= ,𝑗𝑗 = 1, . . . ,𝑃𝑃 (14) 

 �
𝛼𝛼𝑗𝑗𝑧𝑧𝑖𝑖𝑗𝑗0 = 0
(1 − 𝛼𝛼𝑗𝑗)𝑧𝑧𝑖𝑖𝑗𝑗1 = 0 for all 𝑖𝑖 = 1, . . . , 𝑆𝑆,𝑗𝑗 = 1, . . . ,𝑃𝑃 (15) 

3.1.4. Product groups constraint 

category level 𝑥𝑥𝑖𝑖𝑗𝑗𝑖𝑖 = 0 for all 𝑖𝑖 = 1, . . . , 𝑆𝑆, 𝑗𝑗 = 1, . . . ,𝑃𝑃, 𝑟𝑟 ∈ {0,1}, 𝑝𝑝𝑗𝑗𝑘𝑘 > 𝑠𝑠𝑖𝑖𝑘𝑘  (16) 

3.2. Constraints in SSAP-2 

SSAP-2 uses all the constraints from SSAP-1 with the addition of the following.  

3.2.1. Multi-shelves constraints 

product is placed on the shelf  

 �
(1 − 𝑢𝑢𝑖𝑖𝑗𝑗𝑖𝑖)𝑥𝑥𝑖𝑖𝑗𝑗𝑖𝑖 = 0
𝑥𝑥𝑖𝑖𝑗𝑗𝑖𝑖 ≥ 𝑢𝑢𝑖𝑖𝑗𝑗𝑖𝑖
∑ 𝑢𝑢𝑖𝑖𝑗𝑗𝑖𝑖 ≤ 11
𝑖𝑖=0

 for all 1,...,i S= , 𝑗𝑗 = 1, . . . ,𝑃𝑃, 𝑟𝑟 ∈ {0,1} (17) 

the same shelf for clusters  

 ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖1
𝑖𝑖=0 = ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖 1

𝑖𝑖=0 for all 𝑖𝑖 = 1, . . . , 𝑆𝑆, 𝑒𝑒,𝑔𝑔:𝑝𝑝𝑖𝑖𝑐𝑐 = 𝑝𝑝𝑖𝑖𝑐𝑐 ,    𝑒𝑒,𝑔𝑔 = 1, . . . ,𝑃𝑃 (18) 

the next shelf only  

 ∑ ∑ 𝑢𝑢𝑖𝑖𝑗𝑗𝑖𝑖1
𝑖𝑖=0

𝑆𝑆
𝑖𝑖=1 = ∑ 𝑏𝑏𝑗𝑗𝑖𝑖1

𝑖𝑖=0 − ∑ 𝑎𝑎𝑗𝑗𝑖𝑖1
𝑖𝑖=0 + 1 for all 𝑗𝑗 = 1, . . . ,𝑃𝑃 (19) 

lower and upper shelf number where the product is placed 

 �
(𝑖𝑖 − 𝑏𝑏𝑗𝑗𝑖𝑖)𝑢𝑢𝑖𝑖𝑗𝑗𝑖𝑖 ≤ 0
(𝑎𝑎𝑗𝑗𝑖𝑖 − 𝑖𝑖)𝑢𝑢𝑖𝑖𝑗𝑗𝑖𝑖 ≤ 0 for all 𝑖𝑖 = 1, . . . , 𝑆𝑆, 𝑗𝑗 = 1, . . . ,𝑃𝑃, 𝑟𝑟 ∈ {0,1} (20) 
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3.3. Linearization technique in SSAP-1 

Constraints (12) to (15) are not linear, hence the study used the following linearization technique 
proposed by Dantzig (1961). The method is based on using binary variables to outline various kinds of 
non-linear and logical conditions. Let 𝑧𝑧 be a 0/1 variable and 𝑀𝑀 be a big number. The linearization 
below uses the following assumptions: 

𝑟𝑟 = 𝑧𝑧𝑦𝑦 can be linearized as 𝑦𝑦 − (1 − 𝑧𝑧)𝑀𝑀 ≤ 𝑟𝑟 ≤ 𝑦𝑦 + (1 − 𝑧𝑧)𝑀𝑀,−𝑧𝑧𝑀𝑀 ≤ 𝑟𝑟 ≤ 𝑧𝑧𝑀𝑀. 

In this case  

𝑀𝑀 =

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑓𝑓𝑗𝑗max,                                 if equation is with 𝑥𝑥𝑖𝑖𝑗𝑗𝑖𝑖

𝑐𝑐𝑗𝑗max ⋅ �
max
𝑗𝑗={0,1}

(𝑝𝑝𝑗𝑗𝑗𝑗
𝑤𝑤 )⋅𝑓𝑓𝑗𝑗

max

𝑝𝑝𝑗𝑗
ℎ � , if equation is with 𝑦𝑦𝑖𝑖𝑗𝑗𝑖𝑖

�
max
𝑗𝑗={0,1}

(𝑝𝑝𝑗𝑗𝑗𝑗
𝑤𝑤 )⋅𝑓𝑓𝑗𝑗

max

𝑝𝑝𝑗𝑗
ℎ � ,         if equation is with 𝑦𝑦𝚤𝚤𝚤𝚤𝑖𝑖�����

𝑛𝑛𝑗𝑗max𝑓𝑓𝑗𝑗max,                          if equation is with 𝑧𝑧𝑖𝑖𝑗𝑗𝑖𝑖⎭
⎪⎪
⎬

⎪⎪
⎫

for all 𝑗𝑗 = 1, . . . ,𝑃𝑃 

From constraint (12)  

𝛼𝛼𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗0 = 0 ⇒ �

𝑟𝑟 = 𝑧𝑧𝑦𝑦
𝑦𝑦 = 𝑥𝑥𝑖𝑖𝑗𝑗0,𝑦𝑦 ∈ [0,𝑀𝑀]
𝑧𝑧 = 𝛼𝛼𝑗𝑗, 𝑧𝑧 = {0,1}
𝑟𝑟 = 0

 

(1 − 𝛼𝛼𝑗𝑗)𝑥𝑥𝑖𝑖𝑗𝑗1 = 0 ⇒ �

𝑟𝑟 = 𝑧𝑧𝑦𝑦
𝑦𝑦 = 𝑥𝑥𝑖𝑖𝑗𝑗1,𝑦𝑦 ∈ [0,𝑀𝑀]
𝑧𝑧 = 1 − 𝛼𝛼𝑗𝑗, 𝑧𝑧 = {0,1}
𝑟𝑟 = 0

 

𝑦𝑦 − (1 − 𝑧𝑧)𝑀𝑀 ≤ 𝑟𝑟 ≤ 𝑦𝑦 + (1 − 𝑧𝑧)𝑀𝑀 

�𝑧𝑧 = 0 ⇒ 𝑦𝑦 −𝑀𝑀 ≤ 0 ≤ 𝑦𝑦 + 𝑀𝑀 ⇒ 𝑦𝑦 ≤ 𝑀𝑀
𝑧𝑧 = 1 ⇒ 𝑦𝑦 ≤ 𝑟𝑟 ≤ 𝑦𝑦 ⇒ 𝑦𝑦 = 0  

𝛼𝛼𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗0 = 0 ⇒ �
𝛼𝛼𝑗𝑗 = 0 ⇒ 𝑥𝑥𝑖𝑖𝑗𝑗0 ≤ 𝑀𝑀
𝛼𝛼𝑗𝑗 = 1 ⇒   𝑥𝑥𝑖𝑖𝑗𝑗0 = 0 

(1 − 𝛼𝛼𝑗𝑗)𝑥𝑥𝑖𝑖𝑗𝑗1 = 0 ⇒ �
1 − 𝛼𝛼𝑗𝑗 = 0 ⇒ 𝑥𝑥𝑖𝑖𝑗𝑗1 ≤ 𝑀𝑀
1 − 𝛼𝛼𝑗𝑗 = 1 ⇒   𝑥𝑥𝑖𝑖𝑗𝑗1 = 0 ⇒ �

𝛼𝛼𝑗𝑗 = 1 ⇒ 𝑥𝑥𝑖𝑖𝑗𝑗1 ≤ 𝑀𝑀
𝛼𝛼𝑗𝑗 = 0 ⇒   𝑥𝑥𝑖𝑖𝑗𝑗1 = 0 

�
𝛼𝛼𝑗𝑗 = 0 ⇒ 𝑥𝑥𝑖𝑖𝑗𝑗0 ≤ 𝑀𝑀,   𝑥𝑥𝑖𝑖𝑗𝑗1 = 0
𝛼𝛼𝑗𝑗 = 1 ⇒   𝑥𝑥𝑖𝑖𝑗𝑗0 = 0,     𝑥𝑥𝑖𝑖𝑗𝑗1 ≤ 𝑀𝑀 ⇔ �

𝑥𝑥𝑖𝑖𝑗𝑗0 ≤ (1 − 𝛼𝛼𝑗𝑗)𝑀𝑀
𝑥𝑥𝑖𝑖𝑗𝑗1 ≤ 𝛼𝛼𝑗𝑗𝑀𝑀

 

for all 𝑖𝑖 = 1, . . . , 𝑆𝑆, 𝑗𝑗 = 1, . . . ,𝑃𝑃 

Constraints (12) to (15) could be rewritten as follows: 

 �
𝑥𝑥𝑖𝑖𝑗𝑗0 ≤ (1 − 𝛼𝛼𝑗𝑗)𝑓𝑓𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥𝑖𝑖𝑗𝑗1 ≤ 𝛼𝛼𝑗𝑗𝑓𝑓𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚{ for all 𝑖𝑖 = 1, . . . , 𝑆𝑆, 𝑗𝑗 = 1, . . . ,𝑃𝑃 (21) 

 

⎩
⎪
⎨

⎪
⎧𝑦𝑦𝑖𝑖𝑗𝑗0 ≤ (1 − 𝛼𝛼𝑗𝑗)𝑐𝑐𝑗𝑗max ⋅ �

max
𝑗𝑗={0,1}

(𝑝𝑝𝑗𝑗𝑗𝑗
𝑤𝑤 )⋅𝑓𝑓𝑗𝑗

max

𝑝𝑝𝑗𝑗
ℎ �

𝑦𝑦𝑖𝑖𝑗𝑗1 ≤ 𝛼𝛼𝑗𝑗𝑐𝑐𝑗𝑗max ⋅ �
max
𝑗𝑗={0,1}

(𝑝𝑝𝑗𝑗𝑗𝑗
𝑤𝑤 )⋅𝑓𝑓𝑗𝑗

max

𝑝𝑝𝑗𝑗
ℎ �

for all 𝑖𝑖 = 1, . . . , 𝑆𝑆, 𝑗𝑗 = 1, . . . ,𝑃𝑃 (22) 
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⎩
⎪
⎨

⎪
⎧𝑦𝑦𝑖𝑖𝑗𝑗0 ≤ (1 − 𝛼𝛼𝑗𝑗) ⋅ �

max
𝑗𝑗={0,1}

(𝑝𝑝𝑗𝑗𝑗𝑗
𝑤𝑤 )⋅𝑓𝑓𝑗𝑗

max

𝑝𝑝𝑗𝑗
ℎ �

𝑦𝑦𝑖𝑖𝑗𝑗1 ≤ 𝛼𝛼𝑗𝑗 ⋅ �
max
𝑗𝑗={0,1}

(𝑝𝑝𝑗𝑗𝑗𝑗
𝑤𝑤 )⋅𝑓𝑓𝑗𝑗

max

𝑝𝑝𝑗𝑗
ℎ �

 for all 𝑖𝑖 = 1, . . . , 𝑆𝑆, 𝑗𝑗 = 1, . . . ,𝑃𝑃 (23) 

 �
𝑧𝑧𝑖𝑖𝑗𝑗0 ≤ (1 − 𝛼𝛼𝑗𝑗)𝑛𝑛𝑗𝑗max𝑓𝑓𝑗𝑗max

𝑧𝑧𝑖𝑖𝑗𝑗1 ≤ 𝛼𝛼𝑗𝑗𝑛𝑛𝑗𝑗max𝑓𝑓𝑗𝑗max
 for all 𝑖𝑖 = 1, . . . , 𝑆𝑆, 𝑗𝑗 = 1, . . . ,𝑃𝑃 (24) 

3.4. Linearization technique in SSAP-2 

In SSAP-2, constraints (17) are not linear, therefore the authors used the same linearization technique 
as in SSAP-1. 

(1 − 𝑢𝑢𝑖𝑖𝑗𝑗𝑖𝑖)𝑥𝑥𝑖𝑖𝑗𝑗𝑖𝑖 = 0 ⇒

⎩
⎪
⎨

⎪
⎧
𝑟𝑟 = 𝑧𝑧𝑦𝑦
𝑦𝑦 = 𝑥𝑥𝑖𝑖𝑗𝑗𝑖𝑖 ,𝑦𝑦 ∈ [0,𝑀𝑀]
𝑧𝑧 = 1 − 𝑢𝑢𝑖𝑖𝑗𝑗𝑖𝑖, 𝑧𝑧 = {0,1}
𝑟𝑟 = 0
𝑀𝑀 = 𝑓𝑓𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚

 

(1 − 𝑢𝑢𝑖𝑖𝑗𝑗𝑖𝑖)𝑥𝑥𝑖𝑖𝑗𝑗𝑖𝑖 = 0 ⇒ �
1 − 𝑢𝑢𝑖𝑖𝑗𝑗𝑖𝑖 = 0 ⇒ 𝑥𝑥𝑖𝑖𝑗𝑗𝑖𝑖 ≤ 𝑀𝑀
1 − 𝑢𝑢𝑖𝑖𝑗𝑗𝑖𝑖 = 1 ⇒   𝑥𝑥𝑖𝑖𝑗𝑗𝑖𝑖 = 0 ⇒ �

𝑢𝑢𝑖𝑖𝑗𝑗𝑖𝑖 = 1 ⇒  𝑥𝑥𝑖𝑖𝑗𝑗𝑖𝑖 ≤ 𝑀𝑀
𝑢𝑢𝑖𝑖𝑗𝑗𝑖𝑖 = 0 ⇒  𝑥𝑥𝑖𝑖𝑗𝑗𝑖𝑖 = 0 ⇒  𝑥𝑥𝑖𝑖𝑗𝑗𝑖𝑖 ≤ 𝑢𝑢𝑖𝑖𝑗𝑗𝑖𝑖𝑀𝑀 

Constraints (17) could be rewritten as follows: 

 �
𝑥𝑥𝑖𝑖𝑗𝑗𝑖𝑖 ≤ 𝑢𝑢𝑖𝑖𝑗𝑗𝑖𝑖𝑓𝑓𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥𝑖𝑖𝑗𝑗𝑖𝑖 ≥ 𝑢𝑢𝑖𝑖𝑗𝑗𝑖𝑖
∑ 𝑢𝑢𝑖𝑖𝑗𝑗𝑖𝑖 ≤ 11
𝑖𝑖=0

 for all 1,...,i S= , 𝑗𝑗 = 1, . . . ,𝑃𝑃, 𝑟𝑟 ∈ {0,1} (25) 

In SSAP-2, constraints (20) are not linear, therefore they were linearized. Constraints (20) could be 
rewritten as follows: 

𝑢𝑢𝑖𝑖𝑗𝑗𝑖𝑖𝑎𝑎𝑗𝑗𝑖𝑖 ≤ 𝑖𝑖 ⇒ �
𝑢𝑢𝑖𝑖𝑗𝑗𝑖𝑖𝑎𝑎𝑗𝑗𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑗𝑗𝑖𝑖

𝑑𝑑𝑖𝑖𝑗𝑗𝑖𝑖 ≤ 𝑖𝑖 ⇒

⎩
⎪
⎨

⎪
⎧
𝑟𝑟 = 𝑧𝑧𝑦𝑦                      
𝑦𝑦 = 𝑎𝑎𝑗𝑗𝑖𝑖,𝑦𝑦 ∈ [1,𝑀𝑀]
𝑧𝑧 = 𝑢𝑢𝑖𝑖𝑗𝑗𝑖𝑖 , 𝑧𝑧 = {0,1}
𝑟𝑟 = 𝑑𝑑𝑖𝑖𝑗𝑗𝑖𝑖                    
𝑀𝑀 = 𝑆𝑆                      

⇒                                                                               

⇒ �
𝑎𝑎𝑗𝑗𝑖𝑖 − (1 − 𝑢𝑢𝑖𝑖𝑗𝑗𝑖𝑖)𝑆𝑆 ≤ 𝑑𝑑𝑖𝑖𝑗𝑗𝑖𝑖 ≤ 𝑎𝑎𝑗𝑗𝑖𝑖 + (1 − 𝑢𝑢𝑖𝑖𝑗𝑗𝑖𝑖)𝑆𝑆
0 ≤ 𝑑𝑑𝑖𝑖𝑗𝑗𝑖𝑖 ≤ 𝑆𝑆                                                            
𝑑𝑑𝑖𝑖𝑗𝑗𝑖𝑖 ≤ 𝑖𝑖                                                                     

⇒ �
𝑎𝑎𝑗𝑗𝑖𝑖 − (1 − 𝑢𝑢𝑖𝑖𝑗𝑗𝑖𝑖)𝑆𝑆 ≤ 𝑑𝑑𝑖𝑖𝑗𝑗𝑖𝑖 ≤ 𝑎𝑎𝑗𝑗𝑖𝑖 + (1 − 𝑢𝑢𝑖𝑖𝑗𝑗𝑖𝑖)𝑆𝑆
0 ≤ 𝑑𝑑𝑖𝑖𝑗𝑗𝑖𝑖 ≤ 𝑖𝑖                                                            

 

lower and upper shelf number where the product is placed 

 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑏𝑏𝑗𝑗𝑖𝑖 ≥ 𝑢𝑢𝑖𝑖𝑗𝑗𝑖𝑖𝑖𝑖
∑ 𝑏𝑏𝑗𝑗𝑖𝑖1
𝑖𝑖=0 ≤ 𝑆𝑆

∑ 𝑎𝑎𝑗𝑗𝑖𝑖1
𝑖𝑖=0 ≥ 1

𝑎𝑎𝑗𝑗𝑖𝑖 ≤ 𝑏𝑏𝑗𝑗𝑖𝑖
𝑎𝑎𝑗𝑗𝑖𝑖 − (1 − 𝑢𝑢𝑖𝑖𝑗𝑗𝑖𝑖)𝑆𝑆 ≤ 𝑑𝑑𝑖𝑖𝑗𝑗𝑖𝑖 ≤ 𝑎𝑎𝑗𝑗𝑖𝑖 + (1 − 𝑢𝑢𝑖𝑖𝑗𝑗𝑖𝑖)𝑆𝑆
0 ≤ 𝑑𝑑𝑖𝑖𝑗𝑗𝑖𝑖 ≤ 𝑖𝑖

for all 𝑖𝑖 = 1, . . . , 𝑆𝑆, 𝑗𝑗 = 1, . . . ,𝑃𝑃, 𝑟𝑟 ∈ {0,1} (26) 
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4. Computational experiment 

4.1. Experimental data 

The computational experiments show the possibility of finding the optimal solution due to applying 
linearization techniques to both problems (SSAP-1 and SSAP-2) on different problem sizes, especially 
on very large instances. The data were simulated based on real-life data. In accordance with Yang 
(2001), Lim et al. (2004), and Bai and Kendall (2005), the authors generated 23 product sets randomly, 
with a normal distribution with different parameters.  

Here is a description of how the product parameters could be adopted. First, a real planogram with 
products of the definite category was selected. In a real store, on a planogram all product width, depth, 
height, price, etc. are shown, based on this, the mean or expectation of the distribution and standard 
deviation for the category could be estimated. Next, the number of products in the tested set is set, 
and then the achieved values can be applied in the formula of the normal distribution, for example, 
Microsoft Excel includes a random value generator of a normal distribution with mean and standard 
deviation input parameters. These values should be randomly assigned to the products on the tested 
set, and then another number of products set, repeating the parameter generation process for them, 
or repeating the parameter generation process for the same number of products which could 
represent another test product set. 

The generated 23 sets of products contain 10, 15, …, 300 products. Each set of products contains five 
products more than the previous one. Thus five planogram widths were modelled of 250 cm, 375 cm, 
500 cm, 625 cm, and 750 cm. The same widths of all the shelves on the planogram were chosen 
because this is the most frequent case at a store. Each planogram contains three, four or five shelves. 
Product sets and shelves were assigned to three horizontal sales potentials subcategories. 

The optimal solution was found using the commercial solver IBM ILOG CPLEX Optimization Studio 
Version: 12.7.1.0. 

4.2. SSAP-1 

In SSAP-1, 0 and 0 show the results where solutions exist. They do not show instances with unfeasible 
data where all the entries are at implied bounds, e.g. too many products were tried to be placed on 
too short shelves. 0 shows the very large numbers of variables and constraints that were modelled in 
SSAP-1. Nevertheless, the optimal solution was found for all of the presented product sets. 

Tabela 2. Number of variables and constraints in shelf space allocation problem SSAP-1 

Shelves Products Constraints 
Decision variables Nonzero constraint  

coefficients Integer variables Binary variables 

3 10 595 240 10 1,270 
15 907 360 15 1,921 
20 1,207 480 20 2,536 
25 1,505 600 25 3,173 
30 1,803 720 30 3,786 
35 2,103 840 35 4,425 
40 2,405 960 40 5,042 
45 2,707 1,080 45 5,683 
50 3,005 1,200 50 62,296 
55 3,309 1,320 55 6,933 
60 3,601 1,440 60 7,546 
70 4,189 1,680 70 9,280 
80 4,807 1,920 80 10,648 
90 5,399 2,160 90 11,990 
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4 10 790 320 10 1,700 
15 1,180 480 15 2,574 
20 1,580 640 20 3,372 
25 1,972 800 25 4,221 
30 2,364 960 30 5,038 
35 2,750 1,120 35 5,881 
40 3,148 1,280 40 6,704 
45 3,534 1,440 45 7,547 
50 3,938 1,600 50 8,376 
55 4,352 1,760 55 9,234 
60 4,728 1,920 60 10,048 
70 5,524 2,250 70 12,382 
90 7,038 2,880 90 15,916 

125 9,888 4,000 125 22,221 
150 11,860 4,800 150 26,606 
175 13,790 5,600 175 31,125 

5 10 975 400 10 2,120 
15 1,457 600 15 3,177 
25 2,449 1,000 25 5,279 
30 2,931 1,200 30 6,296 
35 3,425 1,400 35 7,365 
40 3,899 1,600 40 8,374 
45 4,395 1,800 45 9,445 
50 4,893 2,000 50 10,478 
55 5,389 2,200 55 11,534 
60 5,879 2,400 60 12,574 
90 8,811 3,600 90 19,976 

125 12,271 5,000 125 27,781 
150 14,703 6,000 150 33,248 
175 17,135 7,000 175 38,935 
200 19,593 8,000 20 44,448 
275 26,947 11,000 275 61,002 

Source: authors’ work. 

Table 3  shows the time which is needed to find an optimal solution in SSAP-1. It was observed that 93 
out of the 134 instances were solved in less than a second. Obviously, for very large instances, the time 
increased up to approximately 1 minute. The longest time of 75 seconds was spent finding a solution 
for 50 products on four shelves of 250 cm. The average solution time was 3.73 seconds. 

Table 3. Solution time for shelf space allocation problem SSAP-1 

No. of shelves eq. 3 No. of shelves eq. 4 No. of shelves eq. 5 
No. of 

products 
Shelf 

width [cm] 
Solution 
time [s] 

No. of 
products 

Shelf 
width [cm] 

Solution 
time [s] 

No. of 
products 

Shelf 
width [cm] 

Solution 
time [s] 

10 250 0.297 10 250 0.015 10 250 0.062 
375 0.344 375 0.031 375 0.390 
500 0.031 500 0.203 500 0.187 
625 0.422 625 1.718 625 0.187 
750 0.188 750 0.016 750 0.125 

15 250 0.078 15 250 0.578 15 250 1.078 
375 0.094 500 0.671 25 250 2.015 
500 1.984 625 1.609 375 5.108 
625 0.250 750 0.359 750 5.546 
750 0.109 20 250 0.062 30 500 0.234 



A linearization approach in solving a non-linear shelf space allocation problem… 49 

20 250 0.047 375 0.531 625 2.556 
375 0.297 625 0.125 750 0.281 
500 0.391 750 0.313 35 250 0.219 
625 0.578 25 250 0.062 375 0.906 
750 0.265 375 0.485 40 750 43.787 

25 250 0.047 500 0.438 45 250 0.796 
375 0.031 30 250 9.326 375 0.672 
500 0.047 375 21.792 500 3.921 
625 0.578 500 0.453 625 9.357 
750 0.453 625 0.328 50 250 23.776 

30 250 0.047 750 0.297 500 0.391 
375 0.218 35 250 2.265 55 500 0.359 
625 2.749 375 0.484 625 4.562 
750 0.062 625 4.015 750 2.655 

35 250 0.031 750 1.188 60 250 0.656 
375 0.281 40 250 0.328 375 0.641 
500 9.545 500 4.281 625 0.531 
625 0.594 45 250 0.563 750 0.390 
750 0.312 625 6.842 90 375 0.140 

40 250 0.109 750 0.281 125 500 7.045 
500 0.953 50 250 75.139 150 625 5.311 
625 0.500 375 0.516 750 4.780 
750 0.203 500 0.047 175 625 2.125 

45 250 0.188 750 1.250 750 18.636 
375 0.156 55 625 1.828 200 625 10.123 
500 0.157 60 250 40.935 750 1.781 
625 0.391 375 0.406 275 750 20.277 
750 0.250 70 375 0.437    

50 375 0.109 500 0.453    

500 0.016 90 500 1.125    

625 0.375 750 10.279    

750 0.047 125 625 61.251    

55 750 0.281 150 750 0.937    

60 250 0.016 175 750 2.218    

375 0.047 
 

     

500 0.281 
 

     

625 9.451 
 

     

750 0.140 
 

     

70 500 0.078 
 

     

625 0.500 
 

     

750 26.415 
 

     

80 750 0.062 
 

     

90 750 0.593 
 

     

Source: authors’ work. 

Fig. 4, Fig. 5 and Fig. 6 show the time needed for CPLEX mixed-integer programming optimisation in 
SSAP-1 for three, four, and five shelves, respectively. The fastest solution was found for three shelves 
because the number of constraints and decision variables was the smallest. Only one instance was 
solved in more than 20 seconds. For four shelves, four instances were solved in more than 20 seconds. 
For five shelves, three instances were solved in over 20 seconds, but also very few instances were 
solved in the time shorter than 1 second as was the case with the three shelves. 
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Fig. 4. CPLEX MIP optimisation for three shelves for SSAP-1 

Source: authors’ work. 

 

Fig. 5. CPLEX MIP optimisation for four shelves for SSAP-1 

Source: authors’ work. 

 

Fig. 6. CPLEX MIP optimisation for five shelves for SSAP-1 

Source: authors’ work. 
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4.3. SSAP-2 

In SSAP-2, Table 4 and Table 5  show the results where solutions exist. They do not show instances with 
unfeasible data where all the entries are at implied bounds, e.g. trying to place too many products on 
too short shelves. Table 4 shows the very large numbers of variables and constraints that were 
modelled in SSAP-2. Nevertheless, the optimal solution was found for all of the presented product sets. 

Table 4. Number of variables and constraints in shelf space allocation problem SSAP-2 

Shelves Products Constraints 
Decision variables Nonzero 

constraint 
coefficients Integer variables Binary variables 

3 10 1,107 340 70 2,398 
15 1,669 510 105 3,589 
20 2,255 680 140 4,888 
25 2,197 850 175 6,041 
30 3,387 1,020 210 7,362 
35 3,967 1,190 245 8,661 
40 4,471 1,360 280 9,626 
45 5,029 1,530 315 10,831 
50 5,589 1,700 350 12,032 
60 6,733 2,040 420 14,554 
70 7,737 2,380 490 17,032 
90 9,935 3,060 630 218,554 

4 10 1,456 440 90 3,164 
15 2,171 660 135 4,711 
20 2,944 880 180 6,428 
25 3,653 1,100 225 7,945 
30 4,426 1,320 270 9,686 
35 5,177 1,540 315 11,389 
40 5,836 1,760 360 12,656 
45 6,555 1,980 405 14,231 
50 7,300 2,200 450 15,824 
55 8,079 2,420 495 17,542 
60 8,804 2,640 540 19,152 
70 10,138 3,080 630 22,438 
90 12,936 3,960 810 28,708 

125 18,061 5,500 1,125 39,913 
150 21,658 6,600 1,350 47,798 
175 25,229 7,700 1,575 55,881 

5 10 1,795 540 110 3,920 
15 2,677 810 165 5,837 
20 3,639 1,080 220 7,974 
25 4,519 1,350 275 9,859 
30 5,471 1,620 330 12,016 
35 6,415 1,890 385 14,145 
40 7,209 2,160 440 15,694 
45 8,151 2,430 495 17,665 
50 9,033 2,700 550 19,638 
55 9,979 2,970 605 21,754 
60 10,899 3,240 660 23,774 
70 12,521 3,780 770 27,826 
90 16,071 4,860 990 35,696 

125 22,331 6,750 1,375 49,521 
150 26,763 8,100 1,650 59,288 
175 31,215 9,450 1,925 69,355 
200 35,683 10,800 2,200 79,208 

Source: authors’ work. 
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Table 5. Solution time for shelf space allocation problem SSAP-2 

No. of shelves eq. 3 No. of shelves eq. 4 No. of shelves eq. 5 
Products Shelf width Time [s] Products Shelf width Time [s] Products Shelf width Time [s] 

10 250 0.282 10 250 0.063 10 250 0.203 
375 0.391 375 0.078 375 0.562 
500 0.656 500 2.609 500 0.625 
625 0.297 625 1.328 625 0.453 
750 0.094 750 1.468 750 0.468 

15 250 0.032 15 250 1.546 15 250 0.203 
375 0.016 375 2.453 375 2.937 
500 0.047 500 2.562 20 250 1.171 
625 0.047 625 1.390 375 6.623 
750 0.093 750 0.859 625 1.828 

20 375 0.032 20 250 0.125 25 250 0.453 
500 0.047 375 0.281 375 1.515 
625 0.094 500 0.235 625 2.234 
750 0.079 625 0.188 750 0.750 

25 250 0.047 750 0.562 30 250 7.904 
375 0.047 25 250 1.187 375 1.546 
500 0.078 375 0.281 35 250 1.624 
625 0.093 500 2.515 625 31.868 
750 0.094 625 0.594 40 750 8.857 

30 375 0.062 750 9.903 45 375 2.077 
500 0.031 30 250 0.156 500 51.676 
625 0.031 375 0.172 625 19.496 
750 0.032 500 1.703 50 250 0.969 

35 375 0.047 625 0.953 375 0.906 
500 0.094 750 0.234 500 2.187 
625 0.110 35 250 0.109 625 0.594 
750 0.094 375 0.828 55 500 1.156 

40 375 0.344 500 0.859 625 39.209 
500 0.156 625 0.281 750 12.997 
625 0.499 750 0.921 60 250 1.297 
750 0.656 40 250 0.296 500 1.734 

45 375 0.109 500 0.063 625 3.171 
500 0.156 625 1.109 750 1.562 
625 0.094 750 1.546 70 500 28.165 
750 0.109 45 250 0.985 750 18.730 

50 500 0.063 625 1.406 90 375 1.687 
625 0.093 750 0.860 125 500 2.328 
750 0.078 50 250 0.140 625 7.060 

60 375 0.093 375 0.328 150 625 2.937 
500 0.281 500 0.234 750 22.291 
625 0.235 625 0.906 175 625 59.376 
750 0.703 750 1.249 750 36.382 

70 500 0.188 55 625 0.813 200 625 14.419 
625 0.390 750 1.203 750 10.091 
750 8.514 60 250 6.045 

 
  

90 750 0.952 375 18.465     
  500 6.749     
  625 5.014     
  70 500 1.812     
  625 23.853     
  90 500 1.828     
  750 4.062     
  125 625 2.765    

   750 2.827    
   150 750 1.312    
   175 750 6.936    

Source: authors’ work. 
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Table 5 shows the time needed to find the optimal solution in SSAP-2. It could be observed that 84 out 
of the146 instances were solved in less than a second. Obviously, for very large instances, the time 
increased to approximately 1 minute. The longest time of 59 seconds was spent to find a solution for 
175 products on eight shelves of 625 cm. The average solution time is 3.838 seconds. 

Fig. 7, Fig. 8 and Fig. 9 show the time needed for CPLEX MIP optimisation in SSAP-2 for three, four and 
five shelves, respectively. The fastest solution was found for three shelves because the number of 
constraints and decision variables was the smallest. Only one instance was solved in 8-9 seconds, 
whereas most were solved in less than a second. For four shelves, also 1 instance was solved in more 
than 20 seconds. For five shelves, seven were solved in over 20 seconds, but also very few instances 
were solved in the time shorter than one second as in the case with the three shelves. Hence, five 
shelves case took more time compared to 3-shelf and 4-shelf cases.  

 

 

Fig. 7. CPLEX MIP optimisation for three shelves for SSAP-2 

Source: authors’ work. 

 

Fig. 8. CPLEX MIP optimisation for four shelves for SSAP-2 

Source: authors’ work. 
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Fig. 9. CPLEX MIP optimisation for five shelves for SSAP-2 

Source: authors’ work. 

The model timing results can be useful in the retail store case designs to improve shelf space planning 
and management operations. The generalisation of the computational experiment given here may be 
possible with more research conducted in additional market sectors. 

5. Conclusion 

SSAP is of crucial importance for retailers. By determining the number of items to be placed on the 
shelves and offered to customers, retailers make fundamental decisions that influence brand visibility 
as well as customer satisfaction which results in the obtained store profit. 

Several important issues in the shelf space were identified. Generally, SSAP is modelled as non-linear, 
it is known to be NP-hard because of a large number of constraints. In this article, the authors 
presented two SSAPs, in each one, non-linear constraints existed, which made it impossible to find an 
optimal solution, especially on large problem instances. SSAP-1 includes shelf, product, and product 
group constraints. SSAP-2 includes additional multi-shelf constraints; both models maximise the total 
profit while allocating products on a planogram. 

The authors adjusted the linearization technique and rewrote come constraints in a linear form which 
allowed to find the optimal solution with the help of the commercial CPLEX solver. Most of the 
instances were solved in less than a second, which makes this method to be very powerful for real 
retail problem cases, and outperforms alternative approaches. This method allows retailers to find the 
optimal number of product items that should be placed on shelves without human intervention. The 
proposed method could also be used by category managers in analysing the economic impacts of shelf 
space planning in retail stores, as the process of shelf space allocation is mostly dictated by operational 
constraints. Considering the merchandising rules, capping and nesting allows to adjust the 
arrangement of products to the customer's needs in a better way. The research findings could be 
utilised to construct a shelf space allocation module in retail information systems.  

The SSAP literature is rich in various models. For example, other SSAPs include dividing the shelf into 
segments of various attractiveness, hierarchical product categorisation, product grouping possibilities, 
store traffic management, assortment optimisation etc. Each of these directions provides interesting 
insights for SSAP modelling. Future research could be focused on analysing other non-linear SSAP 
models in order to propose the methods of decision variables and constraints modelling so that they 
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can be rewritten in a linear form. Thus, there are numerous of intriguing, practically relevant problems 
and research directions that can be pursued in the future.  
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