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Abstract 

Aim: The aim of the article was to review the methodological solutions proposed as part of the hybrid 
method, which combines linear ordering with multidimensional scaling for various types of data. In the 
first step, after applying multidimensional scaling, it was possible to visualise objects of interest in 
a two-dimensional space. In the second step, the objects were linearly ordered according to an 
aggregate measure based on the Euclidean distance. 

Methodology: The general procedure of the hybrid method, which can be used to visualise results of 
linear ordering for metric, ordinal and interval-valued data, was presented. 
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Results: The authors highlight the problems associated with the use of multidimensional scaling in 
linear ordering and how they can be solved. These problems with the application of multidimensional 
scaling in linear ordering are illustrated by an attempt to rank 27 EU countries in 2021 according to 
their progress towards reaching the sustainable development goal (SDG7). The article also contains an 
overview of studies involving the hybrid method. 

Implications and recommendations: If the distribution of errors related to the arrangement of individual 
objects in the scaling space (stress-per-point values – spp) deviates significantly from the uniform 
distribution, the ranking of objects based on the results of multidimensional scaling is distorted. To solve 
this, the paper proposes to select the optimal multidimensional scaling procedure considering two 
criteria: Kruskal’s goodness-of-fit statistic and the Herfindahl-Hirschman index, calculated using spp 
values. The use of the hybrid method is facilitated by the mdsOpt package in R environment. 

Originality/value: The hybrid method makes use of the concept of isoquants and the path of 
development (the shortest line connecting the pattern and anti-pattern of development) proposed by 
Hellwig (1981). By applying multidimensional scaling one can visualise the results of linear ordering for 
more than two variables, whereas other linear ordering methods cannot be used to visualise these results. 

Keywords: aggregate measures, multidimensional scaling, R environment, mdsOpt package, hybrid 
method 

1. Introduction and motivation

1.1. An overview of linear ordering methodology 

The purpose of methods enabling a linear ordering of a set of objects is to rank objects according to 
a specific criterion. These methods can therefore be used when a criterion (a complex phenomenon) 
is chosen that cannot be measured directly (the so-called latent variable – see Paruolo et al., 2013). 
This criterion is then used to order objects from ‘the best’ to ‘the worst’. A complex phenomenon of 
interest can be described by a set of preference variables. The method of linear ordering requires that 
these variables can at least be measured on an ordinal scale (a ranking can only be created if variable 
values can be ordered in terms of their magnitude). All the methods used for ordering a set of objects 
rely on a function that aggregates partial information about individual variables. Elements of a set of 

objects are ordered in terms of the magnitude of the aggregate measure. In the literature the term 
‘aggregate measures’ is used interchangeably with composite indicators (Nardo et al., 2005; Saisana 

et al., 2005; Saltelli, 2007; El Gibari et al., 2019), synthetic indicators (Maggino, 2017), synthetic indices 
(Becker et al., 2017), and composite indices (Mazziotta, & Pareto, 2016; Greco et al., 2019). 

The need to order a set of objects based on aggregate measures appears in various research areas, 
such as sustainable development, population ageing, innovation, the quality of life, health and services, 

social wellbeing, competitiveness and branding, social cohesion, tourist attractiveness, customer 
satisfaction, poverty, and social exclusion. 

Many approaches to the construction of aggregate measures have been proposed in the literature. 

Taking into account the degree of compensation, three types of techniques are distinguished (El Gibari 

et al., 2019, p. 3): compensatory, partially compensatory, non-compensatory. In the compensatory 

approach, it is assumed that a poor score of one indicator can be offset by a high score on another 

indicator and, as a result, may not be reflected in the aggregated score of a composite indicator 

(Banihabib et al., 2017). In partially compensatory methods, an aggregate measure is constructed in 

such a way as to limit the impact of the compensation effect. The goal of non-compensatory methods 

is to develop an ordering algorithm that is more consistent than linear aggregation rules where no 

compensation between indicators is allowed. As a result, “all the weights reflect the relative 
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importance of each indicator rather than a trade-off ratio” (El Gibari et al., 2019, p. 15). This approach 
is used in the literature on multi-criteria decision-making (MCDM) (see Munda, 2008; Munda, & Nardo, 
2009). This article focuses on compensatory and partially compensatory aggregate measures. 

Various concepts and solutions have been proposed to rank a set of objects (cf. Walesiak, & Dehnel, 
2022; Walesiak et al., 2024): 

• the concept of a development pattern (ideal point; the upper pole of development) and a measure 

of development were proposed by Hellwig (1968; 1972), who also introduced the concepts of  
a stimulant and a destimulant, the measure of development defined as a distance of an object from 
the development pattern; 

• aggregate measures that take into account the pattern and the anti-pattern (anti-ideal point; the 
lower pole) of development (Hellwig, 1981; TOPSIS measure – Hwang, & Yoon, 1981); 

• methods proposed in the 1970s and 80s in which measures of central tendency (the arithmetic 
mean, the geometric mean, the median) were used to construct aggregate measures. Various 

modifications were later introduced in order to, for example, include a method for normalising 
values of variables, introduce nominants to the set of variables, propose weights for variables, 
suggest other ways of constructing aggregate measures (cf. Borys et al., 1990); 

• an aggregate measure for ordinal data using the generalised distance measure (GDM2) to gauge 
the distance of objects from the pattern of development (Walesiak, 1993; 1999); 

• an aggregate measure based on special cases of a generalised mean (or the power mean of order r): 

minimum, harmonic mean, geometric mean, arithmetic mean, quadratic mean, cubic mean, maximum 
(Mazziotta, & Pareto, 2022); 

• aggregate measures for fuzzy numbers: e.g. fuzzy technique for order preference by similarity to 

an ideal solution (TOPSIS) (Chen, 2000); Hellwig’s synthetic measure for triangular fuzzy numbers 

(Jefmański, & Dudek, 2016); interval-valued intuitionistic fuzzy synthetic measure (I-VIFSM) based 
on Hellwig’s approach (Roszkowska, & Jefmański, 2021); 

• an aggregate measure of development for interval-valued data (Młodak, 2014; interval‑valued 

TOPSIS – Fu et al., 2020); 
• an aggregate measure that accounts for spatial dependence (Antczak, 2013; Pietrzak, 2014); 

• aggregate measures with a penalty function (Mazziotta, & Pareto, 2016; 2018); 
• aggregate measures with an adjustment to the surroundings of a given object (Łysoń et al., 2016); 
• the application of principal component analysis (PCA) to produce a linear ordering of objects based 

on the value of the first principal component (Bąk, 2018; Perkal, 1967); 
• the static approach to relative taxonomy: the classic version proposed by Wydymus (2013) and the 

positional version proposed by Lira (2015); 

• the dynamic approach to relative taxonomy: for classic data proposed by Walesiak and Dehnel 

(2022) and for interval-valued data, proposed by Walesiak and Dehnel (2023); 

• an iterative approach to ranking a set of objects, whereby in each iteration the highest ranked 
object receives the next position in the ranking and is eliminated from the set of objects 

(Sokołowski, & Markowska, 2017); 
• flexible linear ordering (Sokołowski, & Markowska, 2019). 

In this article the authors discuss methods which combine multidimensional scaling with linear 

ordering for classical data (Walesiak, 2016) and interval-valued data (Walesiak, & Dehnel, 2018; Dehnel, 
& Walesiak, 2019; Walesiak, & Dehnel, 2020). In the case of classic data, presented in the form of  

a data matrix or a data cube, each variable describing an object is expressed by only one real number 
(metric data) or one category (ordinal data). For interval-valued data, presented in the form of a data 
table, each variable describing an object is expressed by a numerical interval. 



Marek Walesiak, Grażyna Dehnel, Andrzej Dudek  190 
 

1.2. The purpose of the article 

The aim of the article was to review the methodological solutions proposed as part of the hybrid 
method, which combines linear ordering with multidimensional scaling for various types of data 
(metric, ordinal, interval-valued). The reviewed studies were analysed in terms of the usefulness of 
particular solutions, taking into account their possible applications (the solutions are compared in 
terms of data type: metric, ordinal, interval-valued; the approach used: static, dynamic; data source: 
primary, secondary; the research problem), as well as the problems associated with the use of 
multidimensional scaling in linear ordering. 

In 2016, Walesiak proposed a two-step research procedure (the hybrid method), which can be used to 
visualise the results of linear ordering for metric data. In the first step, after applying multidimensional 
scaling, objects of interest can be visualised in two-dimensional space, whilst in the second step the 
objects are linearly ordered according to Hellwig’s (1981) aggregate measure based on the Euclidean 
distance. The hybrid method makes use of the concept of isoquants and the path of development (the 
shortest line connecting the pattern and anti-pattern of development), which were proposed  
by Hellwig (1981). Using this method, it is possible to visualise the results of linear ordering for two 
variables, and by applying multidimensional scaling one can view the results of linear ordering for 
𝑚 > 2 variables. 

Another article (Walesiak, 2017b) presented a modification of the hybrid method for ordinal data. The 
mdsOpt package, which can facilitate the selection of the optimal multidimensional scaling procedure 
for metric data was described by Walesiak and Dudek (2017). Walesiak and Dehnel (2018) proposed a 
modification of the hybrid method for interval-valued data. The mdsOpt package for selecting the 
optimal multidimensional scaling procedure for metric and interval-valued data was described in 
(Walesiak, & Dudek, 2020). 

2. The hybrid method procedure 

The general procedure of the hybrid method which can be used to visualise the results of linear 
ordering for various types of data (metric, ordinal, interval-valued), consists of the following steps (the 
description is based on the articles mentioned in Section 1.2): 

1. Select a complex phenomenon that cannot be measured directly (e.g. the level of social cohesion). 
2. Select a set of objects and a set of variables (metric, ordinal, interval-valued) closely related with 

the complex phenomenon of interest. These variables can be divided into three types of preference 
variables (stimulants, destimulants, nominants – formal definitions can be found e.g. in Hellwig 
(1981, p. 48) and Borys (1984, p. 118)). A pattern object and an anti-pattern object are added to 
the set of objects. Owing to the structure of the anti-pattern object, nominants need to be 
converted into stimulants. Coordinates of the pattern object represent the most favourable values 
of preference variables (maximum values for stimulants and minimum values for destimulants), 
while the coordinates of the anti-pattern object represent the least favourable values (minimum 
values for stimulants and maximum values for destimulants). In the case of interval-valued 
variables, the coordinates of the pattern and anti-pattern object are determined separately for the 
lower and upper values of the interval. The scale for measuring the ordinal variables is 
strengthened by the application of the method proposed by Walesiak (2014), based on the GDM2 
distance (Walesiak, 1999), which is appropriate for ordinal data. As a result of transforming ordinal 
variables into metric variables, destimulants and nominants are transformed into stimulants (see 
Walesiak 2017b). The ordinalToMetric function for this purpose is available in the clusterSim 
package (Walesiak, & Dudek 2023a). 

3. Combine the data in the form of: 
a. data matrix 𝑿 = [𝑥𝑖𝑗]𝑛𝑥𝑚 in the case of metric data (𝑥𝑖𝑗  – the value of j-th variable for i-th object), 
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b. data table 𝑿 = [𝑥𝑖𝑗
𝑙 , 𝑥𝑖𝑗

𝑢 ]
𝑛𝑥𝑚

 (where 𝑥𝑖𝑗
𝑙 ≤ 𝑥𝑖𝑗

𝑢 ; 𝑥𝑖𝑗
𝑙  (𝑥𝑖𝑗

𝑢 ) – the lower (upper) bound of interval) 

in the case of interval-valued variables. 
4. Normalise metric and interval-valued variables and arrange the data in the form of: 

a. normalised data matrix 𝒁 = [𝑧𝑖𝑗]𝑛𝑥𝑚 in the case of metric data (𝑧𝑖𝑗  – the normalised value of 

j-th variable for i-th object), 

b. normalised data table 𝒁 = [𝑧𝑖𝑗
𝑙 , 𝑧𝑖𝑗

𝑢 ]
𝑛𝑥𝑚

, where 𝑧𝑖𝑗
𝑙 ≤ 𝑧𝑖𝑗

𝑢 , 𝑧𝑖𝑗
𝑙  (𝑧𝑖𝑗

𝑢 ) – the normalised lower 

(upper) bound of the interval. 

In the clusterSim package, eighteen normalisation methods are presented, which are denoted by 
symbols such as: n1, n2, n3, n3a, n4, n5, n5a, n6, n6a, n7, n8, n9, n9a, n10, n11, n12, n12a, n13 for the 
type argument of the data-normalisation function (see e.g. Walesiak, & Dudek, 2017). Since some of 
these methods yield identical results of multidimensional scaling, methods implemented in the 
clusterSim package are listed below and denoted:  

a. n1, n2, n3, n5, n5a, n8, n9, n9a, n11, n12a – when all variables are ratio variables, 
b. n1, n2, n3, n5, n5a, n12a – when at least one of the variables is an interval variable. 

Interval-valued data require a special way of normalisation. The lower and upper interval limits of j-th 
variable for n objects are combined into one vector containing 2n observations. In this way it is possible 
to use normalisation methods that are appropriate for metric data. Metric variables are normalised 
using the data. Normalization function, while interval-valued variables by applying the 
interval_normalization function, both of which are available in the clusterSim package. 

5. Choose a measure of distance for metric data (Manhattan, Euclidean, squared Euclidean, 
Chebyshev, GDM1 – see e.g. Everitt et al. 2011, pp. 49-50; Jajuga et al. 2003), calculate distances 
and create a distance matrix 𝛿 = [𝛿𝑖𝑘(𝑍)]𝑛𝑥𝑛  ( 𝑖, 𝑘 = 1, … , 𝑛 ). For interval-valued data select  
a measure of distance from Table 1 (e.g. Ichino-Yaguchi, Euclidean Ichino-Yaguchi, Hausdorff, 
Euclidean Hausdorff), calculate distances and create a distance matrix 𝛿 = [𝛿𝑖𝑘(𝑍)]𝑛𝑥𝑛. 

Table 1. Distance measures for interval-valued data 

Symbol Name Distance measure 𝛿𝑖𝑘(𝑍) 

U_2_q1 
Ichino-Yaguchi 

𝑞 = 1,  𝛾 = 0,5 
∑ 𝜑(𝑧𝑖𝑗 , 𝑧𝑘𝑗)

𝑚

𝑗=1
 

U_2_q2 
Euclidean Ichino-Yaguchi 

𝑞 = 2,  𝛾 = 0,5 
√∑ 𝜑(𝑧𝑖𝑗 , 𝑧𝑘𝑗)

2𝑚

𝑗=1
 

H_q1 
Hausdorff 

𝑞 = 1 
∑ [max(|𝑧𝑖𝑗

𝑙 − 𝑧𝑘𝑗
𝑙 |, |𝑧𝑖𝑗

𝑢 − 𝑧𝑘𝑗
𝑢 |)]

𝑚

𝑗=1
 

H_q2 
Euclidean Hausdorff 

𝑞 = 2 
{∑ [max(|𝑧𝑖𝑗

𝑙 − 𝑧𝑘𝑗
𝑙 |, |𝑧𝑖𝑗

𝑢 − 𝑧𝑘𝑗
𝑢 |)]

2𝑚

𝑗=1
}

1 2⁄

 

Note: 𝑧𝑖𝑗 = [𝑧𝑖𝑗
𝑙 , 𝑧𝑖𝑗

𝑢 ]; 𝜑(𝑧𝑖𝑗 , 𝑧𝑘𝑗) = |𝑧𝑖𝑗 ⊕ 𝑧𝑘𝑗| − |𝑧𝑖𝑗 ⊗ 𝑧𝑘𝑗| + 𝛾(2 ⋅ |𝑧𝑖𝑗 ⊗ 𝑧𝑘𝑗| − |𝑧𝑖𝑗| − |𝑧𝑘𝑗|); |⋅| – interval length; 𝑧𝑖𝑗 ⊕

𝑧𝑘𝑗 = 𝑧𝑖𝑗 ∪ 𝑧𝑘𝑗; 𝑧𝑖𝑗 ⊗ 𝑧𝑘𝑗 = 𝑧𝑖𝑗 ∩ 𝑧𝑘𝑗 . 

Source: own presentation based on Billard, & Diday (2006), pp. 244-246; Esposito et al. (2000), pp. 165-185; Ichino, & 
Yaguchi (1994). 

6. Perform multidimensional scaling (MDS): 𝑓: 𝛿𝑖𝑘(𝑍) → 𝑑𝑖𝑘(𝑉) for all pairs (𝑖, 𝑘), where f denotes 
distance mapping from m-dimensional space 𝛿𝑖𝑘(𝑍)  into corresponding distances 𝑑𝑖𝑘(𝑽)  in  
a q-dimensional space (𝑞 = 2). The operation is performed using the smacofSym function from 
the smacof package (Mair et al., 2022). 

7. Finally, as a result of applying multidimensional scaling, one obtains a two-dimensional data matrix 
𝑉 = [𝑣𝑖𝑗]𝑛𝑥𝑞 . Depending on the location of the pattern and anti-pattern object in the two-

dimensional scaling space 𝑉 = [𝑣𝑖𝑗]𝑛𝑥2 the coordinate system needs to be rotated by angle   

according to the formula: 
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 [𝑣′
𝑖𝑗]𝑛𝑥2 =[𝑣𝑖𝑗]𝑛𝑥2 × 𝐷 (1) 

where [𝑣′
𝑖𝑗]𝑛𝑥2 – data matrix in a two-dimensional scaling space after rotating the coordinate system 

by angle 𝜑, 𝐷 = [
𝑐𝑜𝑠𝜑 −𝑠𝑖𝑛𝜑
𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑

]  – rotation matrix. 

The rotation does not change the arrangement of objects relative to one another but makes it possible 
to position the set axis connecting the pattern and anti-pattern along the identity line, which improves 
the visualisation of results. 

8. Visualise and interpret the results (of multidimensional scaling) in a two-dimensional space. This is 
done by: 

• joining two points representing the pattern and anti-pattern by a straight line to form what is 
known as the set axis in the diagram, 

• drawing isoquants of development (curves of equal development) from the pattern. Objects 
located between the isoquants represent a similar level of development. The same level can be 
achieved by objects located at different points along the same isoquant of development (due to  
a different configuration of variable values). 

9. Order objects according to the value of aggregate measure 𝑑𝑖  based on the Euclidean distance 
from the pattern object (Hellwig, 1981): 

 𝑑𝑖 = 1 − √∑ (𝑣𝑖𝑗 − 𝑣+𝑗)2
2

𝑗=1
/√∑ (𝑣+𝑗 − 𝑣−𝑗)2

2

𝑗=1
 (2) 

where 𝑣𝑖𝑗  – j-th coordinate of i-th object in the two-dimensional MDS, 𝑣+𝑗(𝑣−𝑗) – j-th coordinate of 

the pattern (anti-pattern) in the two-dimensional MDS. 

The values of aggregate measure 𝑑𝑖  belong to the interval [0; 1]. The higher the value of id , the higher 

the level of development (e.g. in terms of social cohesion) of a given object. The objects are arranged 
according to descending values of aggregate measure𝑑𝑖. 

3. Problems associated with the use of MDS in linear ordering  

The monograph (Borg et al., 2018, chapter 7) pointed out the typical mistakes made by users of MDS; 
one frequent mistake is connected with the evaluation of stress (the goodness-of-fit statistic), which 
leads to rejecting an MDS solution because its stress is ‘too high’. According to Borg et al. (2018,  
pp. 85-86) “The stress value is, however, merely a technical index, a target criterion for an optimization 
algorithm. An MDS solution can be robust and replicable, even if its stress value is high”, and “stress is 
a summative index for all proximities. It does not inform the user how well a particular proximity value 
is represented in the given MDS space (...) The least one can do is to take a look at the stress-per-point 
values”. 

In light of the above, one should take into account values of stress-per-point (Borg, & Mair, 2017) and 
the Shepard diagram (Mair et al., 2016; De Leeuw, & Mair, 2015). 

If the distribution of errors related to the arrangement of individual objects in the scaling space (stress-
per-point values) deviates significantly from the uniform distribution (e.g. the sum of errors for several 
objects exceeds 40%, a relatively large error associated with one object, the pattern or the anti-
pattern), this leads to an incorrect arrangement of objects on the plane: 

• objects that should be closer to the pattern are closer to the anti-pattern, 

• some objects may be located above the pattern or below the anti-pattern, 
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• the ranking of objects based on the results of multidimensional scaling in a two-dimensional space 
is distorted and does not reflect the actual situation. 

To solve the problem of choosing the optimal MDS procedure, two criteria were applied in the mdsOpt 
package (Walesiak, & Dudek, 2023b): 

• Kruskal’s 𝑆𝑡𝑟𝑒𝑠𝑠-1 (standardised residual sum of squares) measure of fit (see e.g. Borg et al. 2018, 
p. 32): 

 𝑆𝑡𝑟𝑒𝑠𝑠-1𝑝 = √∑ [𝑑𝑖𝑘(V) − �̂�𝑖𝑘]
2

𝑖<𝑘
/ ∑ 𝑑𝑖𝑘

2 (𝑉)
𝑖<𝑘

, (3) 

where 𝑝 – MDS procedure number, �̂�𝑖𝑘  – d-hats, disparities, target distances or pseudo distances 

(see Borg, & Groenen 2005, p. 199), �̂�𝑖𝑘 = 𝑓(𝛿𝑖𝑘) by defining 𝑓 in different ways (ratio, interval, 
polynomial MDS). 

• the Herfindahl-Hirschman 𝐻𝐻𝐼 index (Herfindahl, 1950; Hirschman, 1964), calculated using stress-
per-point values (spp): 

 𝐻𝐻𝐼𝑝 = ∑ 𝑠𝑝𝑝𝑝𝑖
2𝑛

𝑖=1 , (4) 

where 𝑖 = 1, … , 𝑛 – object number, 𝑝 – MDS procedure number. 

The 𝐻𝐻𝐼𝑝  index takes values from the interval [
10,000

𝑛
; 10,000] . The value 

10,000

𝑛
 means that the 

distribution of errors for individual objects is uniform. The optimal situation for an MDS procedure is 
the minimum value of the 𝐻𝐻𝐼𝑝 index. 

The mdsOpt package enables users to select the optimal multidimensional scaling procedure by 
offering various normalisation methods, distance measures and scaling models (ratio, interval, 
mspline), which are implemented in the findOptimalSmacofSym function for classical data, and in the 
optSmacofSymInterval function for interval-valued data (Walesiak, & Dudek, 2023b). 

For all MDS procedures, for which 𝑆𝑡𝑟𝑒𝑠𝑠 − 1𝑝 ≤ 𝑐𝑠 ( cs  – a midrange of -1Stress ), the authors chose 

the one where 𝑚𝑖𝑛
𝑝

{𝐻𝐻𝐼𝑝} is reached. 

The problems with the application of multidimensional scaling in linear ordering were illustrated by  
an attempt to rank 27 EU countries in 2021 according to their progress towards reaching the 
sustainable development goal (SDG7), i.e. “Ensure access to affordable, reliable, sustainable and 
modern energy for all”. Since 2017, Eurostat has published an “Annual EU SDG indicator review” 
(https://ec.europa.eu/eurostat/web/sdi/information-data), which contains an updated list of indicators 
for 17 SDGs (SDGs in the EU context). Seven indicators, defined in 2017 to monitor progress on SDG7, 
have not changed until now (see Table 2). 

Table 2. Indicators for SDG7 for EU countries 

Headline indicators Variable type Unit 

Primary energy consumption D 
mtoe 

2005 = 100 

Final energy consumption D 
mtoe 

2005 = 100 

Final energy consumption in households per capita D kgoe 

Energy productivity S Euro per kgoe 

Share of renewable energy in gross final energy consumption S % 

Energy import dependency D % 

Share of population unable to keep home adequately warm D % 

Note: S – stimulants (where higher values are more preferred), D – destimulants (where lower values are more preferred). 

Source: authors’ compilation based on Eurostat (2023). 

https://ec.europa.eu/eurostat/web/sdi/information-data
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Ten normalisations methods (implemented in the data.Normalization function from the clusterSim 
package: n1, n2, n3, n5, n5a, n8, n9, n9a, n11, n12a), four distance measures (Manhattan, Euclidean, 
squared Euclidean, GDM1) and four MDS models (ratio, interval, mspline model – polynomial function 
of the second and third degree) were used for selecting the optimal MDS procedure. 

Figure 1 shows the relationship between -1Stress  and the 𝐻𝐻𝐼 index, with the best solution denoted 
by the red circle, which satisfies the condition 𝑆𝑡𝑟𝑒𝑠𝑠 − 1 ≤ a midrange of 𝑆𝑡𝑟𝑒𝑠𝑠 − 1 and minimises 
𝐻𝐻𝐼. 

 
Fig. 1. The values of the Stress-1 fit measure and the HHI index for 𝑝 = 160 MDS procedures (with the best solution 
 denoted by the red circle) 

Source: own presentation using the mdsOpt package in R environment (R Core Team, 2023). 

Table 3 contains a comparison of results for the ‘best’ MDS procedure (16) and the two ‘worst’ 
procedures (41 and 154). 

Table 3. A comparison of results for the best and worst MDS procedures 

Elements of the procedure 
MDS procedure 

16 41 154 

Normalisation method n9a n9a n2 

Distance measure 
squared Euclidean 

distance 
GDM1 

squared Euclidean 
distance 

Model interval mspline of 2nd degree ratio 

 Results 

STRESS-1 0.1147 0.1346 0.2005 

HHI 453.56 1068.36 970.23 

Source: own presentation using the mdsOpt package in R environment (R Core Team, 2023). 
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Figures 2 to 4 show the results of multidimensional scaling in a two-dimensional space for the optimal 
procedure 16 (Figure 2) and for procedures 41 (Figure 3) and 154 (Figure 4), for which the distribution 
of errors (in terms of stress per point) deviated considerably from the uniform distribution. When the 
errors were uniformly distributed, the HHI index was equal to 333.33. 

 

 
Fig. 2. The results of MDS (configuration plot with bubble) with Shepard diagram and Stress plot for procedure 16 

Source: own presentation using R environment (R Core Team, 2023). 

The Shepard diagram offers a detailed insight into the goodness-of-fit between distances in the 
multidimensional space (Dissimilarities) and the scaling space (Configuration Distances). The diagram 
presents a general picture of dispersion around the function of regression, making it possible to detect 
outliers. In the optimal solution (see the Shepard diagram in Figure 2), there are no outliers, whereas 
in contrast, the Shepard diagrams in Figures 3 and 4 include outliers, which are the result of the 
distribution of errors in the positioning of objects in a two-dimensional space (see the stress plots). 



Marek Walesiak, Grażyna Dehnel, Andrzej Dudek  196 
 

 

 

Fig. 3. The results of MDS (configuration plot with bubble) with Shepard diagram and Stress plot for procedure 41 

Source: own presentation using R environment (R Core Team, 2023). 

Overall stress for procedure no. 41 (0.1346) was acceptable. The stress plot in Figure 3 shows that the 
object representing Ireland (8) contributed a considerable share of overall stress (26.42%). Outlying 
objects are also clearly evident in the Shepard diagram. The MDS configuration (configuration plot with 
bubble) does not represent all dissimilarities equally well. With increasing values of the 𝐻𝐻𝐼𝑝 index, 

the degree to which multidimensional scaling correctly represents the real relationships between 
objects’ decreases. 

Overall stress for procedure 154 (0.2005) was not acceptable. As evident from the stress plot in Figure 4, 
the pattern object (29), the anti-pattern (30) and the object representing Poland (22) made the biggest 
contribution to overall stress (47.51%). Moreover, the Shepard diagram shows three outliers, which 
disproportionally contributed to total stress. The MDS configuration (configuration plot with bubble) 
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does not represent all the dissimilarities equally well. With increasing values of the 𝐻𝐻𝐼𝑝 index, the 

degree to which multidimensional scaling correctly represents the real relationships between objects 
decreases. 

 

 

Fig. 4. The results of MDS (configuration plot with bubble) with Shepard diagram and stress plot for procedure 154 

Source: own presentation using R environment (R Core Team, 2023). 

The configuration of objects in a two-dimensional space for procedures 16, 41 and 154 was used  
as the basis for calculating the values of aggregate measure 𝑑𝑖  according to formula (2). The ranking 
of EU countries in terms of their progress on the SDG7 goal in 2021 is shown in Table 4. The higher 
the value of 𝑑𝑖 , the more progress a given country had made towards achieving the SDG7 goal  
in 2021. 
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Table 4. The ranking of EU countries according to their progress on the SDG7 goal in 2021 for three MDS 
procedures 

No. Country 
Procedure 16 Procedure 41 Procedure 154 

Distance (2) Rank Distance (2) Rank Distance (2) Rank 

28 Sweden 0.7554 1 0.8524 1 0.5459 5 

5 Denmark 0.7134 2 0.7291 3 0.6047 2 

27 Finland 0.7080 3 0.5814 6 0.4706 17 

21 Austria 0.6834 4 0.5992 5 0.4847 15 

7 Estonia 0.6623 5 0.5517 7 0.4895 14 

25 Slovenia 0.6375 6 0.4847 9 0.4992 12 

4 Czechia 0.6200 7 0.4171 13 0.4496 19 

8 Ireland 0.5945 8 0.8320 2 0.7136 1 

6 Germany 0.5921 9 0.4656 10 0.5083 10 

15 Latvia 0.5869 10 0.6459 4 0.4432 21 

20 Netherlands 0.5862 11 0.3908 16 0.5198 7 

22 Poland 0.5832 12 0.3714 18 0.2144 28 

17 Luxembourg 0.5697 13 0.3047 21 0.5469 4 

12 Croatia 0.5522 14 0.5327 8 0.4751 16 

11 France 0.5441 15 0.4649 11 0.5064 11 

2 Belgium 0.5425 16 0.3556 20 0.4564 18 

26 Slovakia 0.5162 17 0.3841 17 0.4495 20 

18 Hungary 0.5154 18 0.3609 19 0.4353 22 

1 EU 0.5141 19 0.4530 12 0.4907 13 

13 Italy 0.4717 20 0.4028 14 0.5348 6 

24 Romania 0.4536 21 0.4000 15 0.4329 23 

19 Malta 0.4221 22 0.2135 24 0.2619 27 

10 Spain 0.3547 23 0.2668 23 0.5109 9 

23 Portugal 0.3153 24 0.2770 22 0.5193 8 

9 Greece 0.2731 25 0.1998 25 0.5511 3 

14 Cyprus 0.2061 26 0.1384 26 0.4243 24 

16 Lithuania 0.1214 27 0.1177 27 0.2733 26 

3 Bulgaria 0.0569 28 0.0661 28 0.3195 25 

Source: authors’ calculations using R environment (R Core Team, 2023). 

Kendall’s tau correlation coefficient was calculated for three procedures (16, 41 and 154) to evaluate 
the similarity of the rankings of EU countries in terms of their progress on the SDG7 goal in 2021. The 
tau value for the results of procedure 41 in relation to those resulting from procedure 16 was 0.725, 
and for the results of procedure 154 in relation to those obtained by applying procedure 16, it was 
0.254. 

When the ranking obtained by applying procedure 41 was compared with that resulting from the 
optimal procedure 16, one could notice a number of changes in the order of countries: Ireland moved 
from 8th to 2nd place, Latvia – from 10th to 4th, Luxembourg fell from 13th to 21st, Czechia – from 7th to 
13th, and Poland – from 12th to 18th. The changes were due to a considerably non-uniform distribution 
of errors regarding the arrangement of individual objects in the scaling space, as indicated by the value 
of 𝐻𝐻𝐼 = 1068.36 based on stress-per-point values. 

When a similar comparison was made for the ranking obtained by applying procedure 154, changes in 
the order of countries were even more evident: Ireland moved up from 8th to 1st place, Luxembourg – 
from 13th to 4th, Finland dropped from 3rd to 17th, and Poland – from 12th to 28th. The resulting ranking 
is largely random because of a very poor fit of the MDS configuration, as indicated by the value of 
𝑆𝑡𝑟𝑒𝑠𝑠 − 1 = 0.2005 and a considerably non-uniform distribution of errors regarding the 
arrangement of individual objects in the scaling space, as measured by the value of 𝐻𝐻𝐼 = 970.23.  
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4. A list of studies involving the hybrid method 

Table 5 presents an overview of studies involving the hybrid method, which combines linear ordering 
with multidimensional scaling, together with information about data type, approach (static or dynamic), 
data source and the research problem. 

Table 5. An overview of studies involving the hybrid method, which combines linear ordering with multidimensional 
scaling 

No.. Article 
Data 
type 

Approach 
Data  

source 
Research problem 

1 Walesiak (2016) Metric Static Secondary 
Statistics 
Poland 

An assessment of tourist attractiveness of 29 districts of 
Dolnośląskie Province in 2014 

2 Walesiak 
(2017a) 

Metric Dynamic Secondary 
Statistics 
Poland 

Measuring and assessing changes in the level of social cohesion 
across districts of Dolnośląskie Province in 2005-2015 

3 Walesiak 
(2017b) 

Ordinal Static Primary Linear ordering of 27 properties described by 6 ordinal 
variables in the real estate market of Jelenia Góra in terms of 

their attractiveness 

4 Walesiak, & 
Dudek (2017) 

Metric Static Secondary 
Statistics 
Poland 

An assessment of tourist attractiveness of 29 districts of 
Dolnośląskie Province in 2014 

5 Dehnel et al. 
(2018) 

Metric Dynamic Secondary 
Eurostat 

An assessment of changes regarding population aging in 35 
regions of the Visegrad Group in 2016 compared with 2005 

6 Walesiak, & 
Dehnel (2018) 

Interval-valued Static Secondary 
Statistics 
Poland 

An assessment of economic efficiency of small manufacturing 
companies in districts of Wielkopolskie Province 

7 Dehnel, & 
Walesiak (2019) 

Metric, Interval-
valued 

Static Secondary 
Statistics 
Poland 

An assessment of economic efficiency of small manufacturing 
companies in districts of Wielkopolskie Province 

8 Dehnel et al. 
(2019) 

Metric, Interval-
valued 

Static Secondary 
Statistics 
Poland 

A comparative analysis of rankings of Poland’s provinces in 
terms of social cohesion in 2016 

9 Obrębalski, & 
Walesiak (2019) 

Metric Dynamic Secondary 
Eurostat 

Measuring the degree of variation in the labour market 
situation of people aged 15-24 in border areas of Poland, 
Czechia, and Germany in 2010 and 2018 using 6 variables 

10 Walesiak, & 
Dehnel (2019b) 

Metric Dynamic Secondary 
Statistics 
Poland 

A comparison of the degree of population aging across 
Poland’s provinces in 2002, 2010 and 2017 in terms of median 
age, old age rate, double ageing index, ageing index, old-age 

dependency ratio 

11 Walesiak,  
& Dehnel 
(2019a) 

Metric, Interval-
valued 

Static Secondary 
Statistics 
Poland 

A comparative analysis of rankings of Poland’s provinces in 
terms of social cohesion in 2016 

12 Walesiak, & 
Dehnel (2020) 

Metric, Interval-
valued 

Static Secondary 
Statistics 
Poland 

A comparative analysis of rankings of Poland’s provinces in 
terms of social cohesion in 2018 

13 Dehnel et al. 
(2020) 

Metric Dynamic Secondary 
Eurostat 

An assessment of changes regarding population aging in 
regions of the Visegrad Group in 2016 compared with 2005 

14 Walesiak, & 
Dudek (2020) 

Metric, Interval-
valued 

Static Secondary 
Statistics 
Poland 

An assessment of tourist attractiveness of districts of 
Dolnośląskie Province using metric data 

An assessment of tourist attractiveness of Poland’s provinces 
using interval-valued data 

Source: authors’ compilation. 

The information in Table 5 can be summarised as follows: 

• data type: 12 studies based on metric data (the starting point was a data matrix or a data cube); in 
6 studies based on interval-valued data (the starting point is a data table) and one based on ordinal 
data (the starting point was a data matrix), 

• approach: 9 studies involving the static approach and 5 – the dynamic approach, 

• data source: 13 studies based on secondary data from Statistics Poland (10) and from Eurostat (3), 
and just 1 was based on primary data. 
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5. Conclusions 

The article offers an overview of the methodological solutions regarding the hybrid method, which 
combines multidimensional scaling and linear ordering, taking into account different types of data 
(metric, ordinal, interval-valued). The purpose of the review was to assess the applicability of the 
various methods taking into consideration the insights they can provide as well as the problems 
associated with the use of multidimensional scaling for the purpose of linear ordering. Multidi-
mensional scaling can be used to visualise the results of linearly ordered objects in a two-dimensional 
space. The graphic presentation was enriched by the inclusion of development isoquants (curves of 
equal development) and a development path (i.e. the shortest line connecting the development 
pattern and anti-pattern). It was not possible to visualise the results in this way using other linear 
ordering methods mentioned in Section 1.1. 

The problems encountered when applying multidimensional scaling in linear ordering are exemplified 
by the results of the study in which 27 EU countries were ranked according to their progress towards 
reaching the sustainable development goal (SDG7) in 2021. When the distribution of errors regarding 
the arrangement of objects (countries) in the scaling space, measured by values of stress-per-point, 
deviated considerably from the uniform distribution, the resulting arrangement of objects in a two-
dimensional space was incorrect. The problem could be solved by selecting an optimal multidi-
mensional scaling procedure, taking into account various normalisation methods, distance measures, 
and scaling models (ratio, interval, mspline). Two criteria were applied to select the optimal MDS 
procedure: Kruskal’s 𝑆𝑡𝑟𝑒𝑠𝑠-1, which is a measure of fit (standardised residual sum of squares), and 
the Herfindahl-Hirschman 𝐻𝐻𝐼 index, calculated on the basis of stress-per-point values. 

The article contains a list of studies involving the hybrid method, including information about the type 
of data used in the analysis (metric, ordinal, interval-valued), the approach (static or dynamic), data 
source (primary or secondary) and the research problem.  

The use of the hybrid method was facilitated by the functions implemented in the mdsOpt package in 
R environment (Walesiak, & Dudek 2023b). 
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