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can actually be seen in such plots. 

For this purpose, in this paper a methodology is presented in order to analyse to what extent arbitrary 
machine learning models are explainable by partial dependence plots. The proposed framework 
provides both a visualisation, as well as a measure to quantify the explainability of a model on an 
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of this application domain, is used to demonstrate the proposed methodology.

Keywords: credit scoring, interpretable machine learning (IML), partial dependence plot (PDP), 
explainability

JEL Classification: C52
DOI: 10.15611/aoe.2023.1.07

©2023 Gero Szepannek, Karsten Lübke
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

Quote as: Szepannek, G., Lübke, K. (2023). How much do we see? On the explainability of partial 
dependence plots for credit risk scoring. Argumenta Oeconomica, 1(50), 137-150.

1. Introduction

During the last few years several frameworks for automated machine learning 
(autoML, Hutter et al., 2018) have been proposed. One such framework is provided 
by the R package mlr3 (Lang et al., 2019). It allows to define a chain of modelling 
steps, including data preprocessing operations such as dimensionality reduction and 
imputation up to the final model evaluation using different strategies such as cross-
validation, bootstrap and also holdout sets. All model specification choices can be 

** Stralsund University of Applied Sciences, Germany. ORCID: 0000-0001-8456-1283.
** FOM University of Applied Sciences, Dortmund, Germany.



138 G. Szepannek, K. Lübke  

defined as so-called hyperparameters, and algorithms are provided in order to 
optimise these hyperparameters with regard to a predefined performance measure. 
As a consequence of the free availability of tools such as mlr3, the use of complex 
machine learning algorithms has been facilitated also for companies with compara-
tively low experience in this field. The resulting models are able to detect complex 
nonlinear multivariate dependencies without the need for the analyst to explicitly 
specify the kind of the functional relationship of the dependence. For this reason, 
such models are often called black box models.

In the application context of credit risk scoring, traditionally white box logistic 
regression models (Crook et al., 2007; Szepannek, 2022) are frequently used in 
business practice. Nonetheless, numerous benchmark studies have shown that 
properly parametrised modern machine learning algorithms, such as random forests 
and gradient boosting, are often of superior predictive accuracy compared to the 
aforementioned traditional scorecard models (for an overview cf. Louzada et al., 
2014). A comprehensive benchmark study which evaluates several algorithms on a 
set of domain-specific data sets on a meta-level can be found in Baesens et al. (2002) 
and has been updated by Lessmann et al. (2015). The specific situation of unbalanced 
classes was addressed by Vincotti and Hand (2002) and Brown and Mues (2012), 
and investigated together with a systematic hyperparameter tuning for several classes 
of machine learning algorithms in a comprehensive benchmark study (Bischl et al., 
2014). In Crook et al. (2007) and Szepannek (2017), the current challenges are 
discussed in a broader context, e.g. reject inference (Banasik and Crook, 2007), the 
Basel 2 accord (Basel Committee on Banking Supervision, BCBS, 2005), and profit 
scoring (Verbraken et al., 2014).

In order to prevent the concomitant lack of model understanding, the BCBS 
established a number of requirements on transparency from the perspective of 
regulation. The ”selection of certain risk drivers and rating criteria should be based 
not only on statistical analysis, but the relevant business experts should be consulted 
on the business rationale and risk contribution of the risk drivers under consideration” 
(European Banking Authority, 2017). This underlines the need for an appropriate 
methodology to understand what the models have learned, and still for their 
explanation.

According to Szepannek and Aschenbruck (2020), there can be different 
requirements to the explanation of a model depending on the context. Several authors 
recently applied methods of interpretable machine learning to credit scoring (Biecek 
et al., 2021; Bussmann et al., 2020; Dastile and Celik, 2021; Demajo et al., 2020; 
Torrent et al., 2020). In Bücker et al. (2021), the different requirements are linked to 
the corresponding methodology within a unified framework for Transparency, 
Auditability and eXplainability for Credit Scoring (TAX4CS). According to this, the 
methods can be distinguished into either global explainability on the model level 
such as variable importance (Breiman, 2001), partial dependence (PD, Friedman 
2001), or accumulated local effects (ALE, Apley, 2016), or local explainability on 
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the level of individual predictions such as Shapley additive explanations (SHAP, 
Strumbelj and Kononenko, 2014), breakdown plots (Staniak and Biecek, 2018), or 
local interpretable model explanations (LIME, Ribeiro et al., 2016). Many of them 
can be accessed via the DALEX framework (Biecek, 2018).

This paper concentrates on partial dependence, denoting a popular and well-
known method for a model-agnostic assessment of a feature’s effect on the model 
outcome. Despite its popularity and its frequent use in practice, partial dependence 
analysis is usually applied without addressing the corresponding question how much 
can actually be seen in the resulting plots. For this purpose, the methodology is 
presented in order to analyse to what extent arbitrary machine learning models are 
explainable by partial dependence plots. The proposed framework provides both a 
visualisation as well as a measure to quantify the explainability of a model on an 
understandable scale.

Molnar et al. (2020a) pointed out that the superior performance of complex 
machine learning models results from their ability to detect high order dependencies 
and nonlinearities. Such dependencies are difficult to understand for analysts, while 
it has to be noted that the trade-off between predictive accuracy and interpretability 
is not necessarily given for any data (Rudin, 2019). As a potential solution, criteria 
are proposed that help to quantify the interpretability of a model. Model selection 
can thus consist in multi-objective optimisation of both predictive performance and 
interpretability. The approach followed in this paper differs from this in the sense 
that it assumes an existing model (which may be the one with the largest predictive 
accuracy). Afterwards, the question addressed is ”How much can we see in the 
interpretation given by the partial dependence plots for a given model?” 

In Section 2, partial dependence is reviewed. Based on this, a measure is presented 
that allows to quantify how far it explains a given model. In the case study, the 
methodology is applied to the real-world context of credit scoring using the South 
German credit data (Groemping, 2017; Szepannek and Luebke, 2021). In Section 3, 
an algorithm is presented that can be further used to identify a subset of variables 
which best serve to explain model. Finally, the research results are summarised in 
Section 4.

2. Quantifying explainability

2.1. Partial dependence

Referring back to Friedman (2001), partial dependence plots (PDP) are a popular 
tool to understand the effect of one or several features w.r.t. the output of a predictive 
model. One of their advantages is that they can be used for different kinds of 
predictive models ( )f̂ x : the set of predictor variables x = (xs, xc) is split into disjoint 
subsets and the partial dependence function for a subset xs is given by:

 ( ) ( ) ( )ˆ ,s s c cPD X f X X dP X= ∫  (1)
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This means that a partial dependence function computes the expected prediction 
given Xs takes the values xs. For a data set with n observations, it is estimated by:

 
 ( ) ( )1

1 ,ˆn
s s s ici

PD x f x x
n =

= ∑  , (2)

where xis are the values that observation i takes in Xs. Note that for Xs = X it is 
( ) ( )ˆPD X f X=  corresponds to the model itself and for s =∅ or in other words  

Xc = X, the partial dependence function ends up in:

 ( ) ( )ˆPD f X dP X∅ = ∫ , (3)

which is a constant that can be estimated by ( )1

1 ˆn
ii

f x
n =∑ (xi).

2.2. Application to the South German credit data

The South German credit data is publicly available at the UCI ML benchmark 
repository (Dua and Graff, 2017) and has been made available by Groemping (2019; 
see also Szepannek and Luebke, 2021). It has 1000 observations and 21 variables 
where 7 predictors are numeric and 13 are categorical plus a binary target variable. 
The predictable event describes the default status of a loan. The overall prior default 
rate on the data is 0.3. For the purpose of this paper a random forest model was 
trained on the South German credit data using default parameters according to Liaw 
and Wiener (2002), which turned out to be a good  choice  for this purpose (Szepannek, 

 
Fig. 1. Partial dependence plot for the variables duration (left, black line) and status account (right, 

bars), as well as the predictions on the training data (grey dots).

Source: authors’ own.
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2017). Usually, the data are split into training, validation and test sets in order to 
ensure a proper model selection and validation. As these aspects are beyond the 
scope of this paper, but rather the interpretability of the resulting model is of interest, 
no additional splits of the data were undertaken and the forest was trained on the 
entire data.

Figure 1 illustrates the partial dependence curves for the numeric variables 
duration and status account. This allows for a visual analysis of the effect of the 
variable on the predicted default probability and it can be easily seen that the risk 
(i.e. the default probability) increases for longer maturity time, whereas from roughly 
four years (45 months) onwards the risk stays constantly high. Analogously, it can be 
seen from the right plot that the risk decreases with a larger amount of money in the 
account. Nonetheless, when adding the predicted training data points to the graph it 
has to be noted that the PDP only partly explains the predictions by the models which 
cover a much broader range than the PDP indicates. This is obvious, as partial 
dependence is obtained by averaging. In turn, relying on the PD can be misleading.

2.3. Explainability

In the following step, a measure is derived to quantify the degree of explanation 
given by a partial dependence function for a model. A perfect explanation will have 
the same values for the partial dependence function and the predictions of the data. 
In this case, all points in a scatterplot of predictions vs. explanation (PX-plot) will lie 
on the diagonal. Such a plot is shown in Figure 2, where compared to Figure 1, the 
x-axis changed.

Fig. 2. Partial dependence (abscissa) vs. true predictions (ordinate) of training data for the variables 
duration (left) and status account (right).

Source: authors’ own.
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The above allows for a graphical analysis of the explainability. The more repre-
sentative a PDP for a model, the closer the points to the diagonal. From this plot, it 
can be seen that the PDP covers a much smaller range of predicted values compared 
to the true model’s predictions. Note that the x-axis of the right plot for the categorical 
variable status account takes only for distinct values – one for each category of the 
variable. In addition, the range of the partial dependence values is broader compared 
to those for the status account variable, and in particular for this variable there are 
only few observations with low values of the PDP ≤ 0.25 and large predictions > 0.75.

In order to quantify the confidence in an explanation given by a partial dependence 
plot, one can measure the differences between the partial dependence function 
PD(Xs) and the model’s predictions. A natural way of doing this is obtained by 
computing the expected squared difference (ESD):

 
( ) ( ) ( )( ) ( )

2
 ˆ

s s sESD PD f X PD X P Xd= ∫ −  . (4)

Note that in contrast to common error functions, the ESD does not measure the 
difference between predictions and observations, but instead between the partial 
dependence function PDs(X) and the model’s predictions ( )f̂ X .

For an easier interpretation ESD(PDs) can be benchmarked against ( )ESD PD∅ :

 
( ) ( )( ) ( )

2
 ˆESD PD f X PD XdP∅ ∅= ∫ − . (5)

The comparison of both ESD(PDs) and ( )ESD PD∅  can be used to quantify the 
explainability ϒ of model ( )f̂ X  by a partial dependence function PDs via the ratio:

 𝛶𝛶𝛶𝛶(𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠) = 1 − 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠)
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸∅).  (6)

Note that ϒ in (6) is somehow similar to the common R² as used in linear 
regression: ϒ close to 1 states that a model is well represented by a PDP and the 
smaller it is, the fewer of the model’s predictions are explained in the PDP. Real data 
plug-in estimates for ESD(PDs) and ( )ESD PD∅  are obtained using  ( )s sPD x  and 
PD∅  as described above.

2.4. Application to the South German credit data
Table 1 (column ϒ ) shows the explainability of the random forest model on the 

South German credit data for all variables. Among all the numeric variables, duration 
has the highest explainability of only ϒ = 0.077, which is nonetheless pretty far from 
1 and thus reflects the visual impression as gained by considering Figures 1 and 2.

Columns  kϒ  of the table describe the explainability for increasing number of  
variables k in the subset Xs (cf. Section 3). It can be seen that for two subsets Xs ⊂ Xs*, 
it is ϒ(PDs) ≤ ϒ(PDs*) with ϒ(PDs) = 1 for Xs = X. The PX-plot in Figure 3 illustrates 
the fit of PDs from Table 1 with dim(Xs) = 9 and ϒ = 0.8 (which obviously cannot be 
visualised anymore). Compared to Figure 2, the PDP covers a broader range and the 
points are closer to the diagonal.
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Table1

Explainability  for all variables of the South German credit data

Variable  k  Variable  k  
status.account 0.221 1 0.221 rate.to.income 0.004 11 0.878
duration 0.077 2 0.304 personal.status 0.001 12 0.910
credit.history 0.074 3 0.366 job 0.000 13 0.937
credit.amount 0.054 4 0.434 resident.since 0.000 14 0.960
purpose 0.039 5 0.521 housing 0.013 15 0.977
savings 0.044 6 0.595 other.debtors 0.004 16 0.989
age 0.023 7 0.671 num.credits 0.001 17 0.995
employment.since 0.018 8 0.742 telephone 0.001 18 0.998
property 0.017 9 0.805 numb.people.liable 0.000 19 1.000
other.installments 0.017 10 0.843 foreign.worker 0.001 20 1.000

Source: authors’ own.

Fig. 3. Partial dependence vs. true predictions of training data for dim(Xs) = 9 and  = 0.8.

Source: authors’ own.

2.5. Connection to the existing methodology

Note that the proposed measure of explainability ϒ reflects the difference between 
the PDP and the model’s prediction, which is an important but not the only aspect of 
interest with regard to explainability. A well-known limitation of partial dependence 
curves is that they might be misleading in the case of correlated predictor variables 
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(Hooker and Mentch, 2019). In Friedman and Popescu (2008), an H2 statistic is 
proposed that can be used to identify the existence of interactions between predictor 
variables. For correlated predictor variables, accumulated local effect plots (ALE, 
Apley, 2016) have been shown to be more appropriate than partial dependence plots. 
ALE plots are beyond the scope of this paper, but the extension of ϒ for ALE plots 
may be a subject for future research.

A popular visual tool to analyse hidden variability behind a partial dependence 
curve are individual conditional expectation (ICE) curves (Goldstein et al., 2015), 
where instead of averaging over all the observations, a separate PD curve is drawn 
for each observation xi:

 
 ( ) ( )ˆ ,s i s icICE x f x x= . (7)

The resulting plot of the ICE curves enables to understand the heterogeneity of 
the PD as a function of xs (cf. Figure 4 (left) for the variable duration). In particular, 
ICE plots can be used for a visual analysis of whether the individual curves show the 
same trend. Yet, to the best of the author‘s knowledge, this can only be analysed 
visually, but no objective measure has been proposed in order to quantify this. In 
contrast, explainability ϒ quantifies the observed variation hidden behind a partial 
dependence function into one single and interpretable value that is close to 1 (for 
small variation) and close to 0 (for strong variation) by integrating over the 
distribution P(Xs).

 
Fig. 4. ICE curves for the variable duration (left) and simulation results for the computation time 

based on subsamples of different size, as well as the resulting distribution of Ŷ  for the variable 
duration (right).

Source: authors’ own.
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Another issue of PDPs is their extrapolation to areas where little or no training 
data is available (Hooker and Mentch, 2019, Molnar et al., 2020b). Note that 
explainability as a global measure reflects the distribution of the training data w.r.t. 
the predictor variables, i.e. a large value of ϒ does not prevent from misinterpreting 
extrapolations of the model outside the range of the training data.

Note that for the individual curves in an ICE plot, the values of xs are varied 
regardless of how likely they are to occur, conditional on xic, which might be 
misleading. ϒ, in addition, takes into account the joint distribution of variables from 
Xs and Xc, as from each curve only the observed points xis (dots in the graph) are used.

2.6. Computational considerations

For the common implementations of partial dependence plots, e.g. those in 
Greenwell (2017), Biecek (2018) and Molnar et al.,(2018), the scope consists in 
visuali-sation of the PD curve and it is sufficient to restrict on computing  sPD  for  
a subset grid of the data. In contrast, ϒ  accounts for distribution P(Xs), and thus 
requires computation of the partial dependence  ( )s iPD x  for all observations.

Computation of  ( )s iPD x  requires the Cartesian product s cx x⊗  of the two 
variable subsets xs and  xc of the data, therefore the calculation of  for given data is 
O(n2) in the number of observations n with regard to both computation time and 
memory usage. In order to circumvent this issue arising with large sample sizes, an 
alternative consists in its computation on a random subsample of the xis, i = 1, ..., n. 
Note that a similar approach was proposed to reduce the computation cost for Shapley 
additive explanations (Strumbelj and Kononenko, 2014), where random subsets of 
variables are used in order to avoid enumerating all possible permutations of variable 
subsets. Naturally, this trades off with the variance of the estimate. Figure 4 (right) 
illustrates both the reduction in (average) computation time (dashed line) as well as 
the increasing variability of the estimates (box plots) for 50 random samples of the 
xs using an INTEL Xeon CPU E3-1505M v5 2.8Ghz 8 core with 32GB RAM.

3. Maximising explainability

3.1. Based variable selection

According to Table 1 (column ϒ ), ϒ can be used to compare different variables 
with regard to their ability to explain a model (using a PDP). Consequently, a forward 
variable selection can be carried out to maximise the explainability of a model with 
as few variables as possible (cf. Algorithm 1). Note that, as opposed to traditional 
variable selection or variable importance, the variables here are not selected with 
regard to the model’s performance but rather with regard to the degree of explanation 
that they provide for an existing model.
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Source: authors’ own.

3.2. Application to the South German credit data

Table 1 (column  kϒ ) provides an example of variable selection based on ϒ to 
maximise explainability (the step number is indicated in column k): a PDP of only 
two variables already provides an explainability of 0.304 and for dim (Xs) = 5 (/9/12) 
an explainability  dim( )sXϒ  = 0.5 (/0.8 /0.9) is obtained. Figure 5 shows a trellis 
visualisation (Cleveland, 1993) of a two-dimensional PDP (as implemented in e.g. 
Greenwell, 2017) for the two variables: status account and duration, with the highest 
explainability. It reveals the same trend of increasing risk with longer maturity times 
for all status levels of the account, but an observable interaction exists for existing 
accounts with a low or negative balance where the increase in risk is stronger.

Fig. 5. 2D PDP for the variables status account and duration.

Source: authors’ own.
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Although in general, partial dependence functions are not restricted with regard 
to the dimension of  Xs, their visualisation is limited to one or two dimensions. For 
more than two variables one can create scatterplot matrices (Cleveland, 1993), but 
this still does not allow to visualise higher order interactions between variables. This 
should be kept in mind when partial dependence plots are used to explain black box 
machine learning models. For the random forest model on the South German credit 
data, the most explainable two-dimensional PDP from Figure 5 only explains 30% of 
the variation of the model’s predictions.

Conclusion

In recent years, several failures of AI applications have occurred. As a result, 
regulatory requirements for business applications of machine learning and the ongoing 
hype around the methodology for explainable AI (XAI) have emerged, but a unified 
framework on up to what extent the explanations by XAI can be misleading is still 
missing. Hence, a methodology was presented that allows to analyse to what degree 
predictive black box machine learning models can be explained by partial dependence 
plots. The framework provides both a graphical analysis of the mismatch between the 
PD curve and the predictions by the model in terms of PX-plots, as well as a measure 
(ϒ) to quantify explainability of a model by a PDP on an interpretable scale. An 
algorithm was presented to maximise explainability with a low-dimensional PDP.

The proposed methodology was applied in this study to the publicly available 
South German credit data using a random forest model. It appears that a reasonable 
and well-interpretable partial dependence curve as it is observed for the variable 
duration, can still deviate noticeably from the predictions of the model – which has 
to be taken into account when explaining it. The proposed measure of explainability 
ϒ can help to support business decisions by validating the model’s interpretability. A 
PDP of the two most explainable variables, i.e. status account and duration, is more 
appropriate in order to understand how the model behaves.

In general, the explainability of the model becomes better when an increasing 
number of variables are taken into account, but for >2D PDPs can no longer be 
visualised and thus an analyst will not be able to understand any high-order 
dependencies that impact on the model’s predictions. An R package with imple-
mentations of the described methodology is available on Github under https://github.
com/g-rho/xPDPy.

Note that the proposed measure of explainability ϒ only reflects the difference 
between the partial dependence curve and the predictions by the model under 
investigation, which is an important but not the only aspect of interest with regard to 
explainability. For example, individual conditional expectation (ICE) plots allow for 
a visual analysis whether the individual curves for all the observations show the 
same trend. Yet, currently there is no objective measure to quantify this – which 
could be a scope of future research.
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There is also a need for ongoing research to develop methodology to understand 
high order interactions, e.g. based on the ideas presented in Britton (2019), and 
Gosiewska and Biecek (2019). Psychology provides a reasonable number of 
dimensions that can be simultaneously assessed by humans, there seems to be 
somewhere around seven (Miller, 1956), while naturally there might be differences 
depending on the experience of the analyst. However, it is questionable to what 
degree humans will ever be able to understand nonlinear high-order interactions. For 
this reason, the proposed measure can be considered as a tool to quantify the degree 
of explainability of a black box machine learning model.

Molnar et al. (2020a) suggested an approach to simultaneously optimise a trade-
off between predictive accuracy and interpretability. In contrast, other authors claim 
to rather use interpretable models (Rudin, 2019) which may trade off with predictive 
power (but not always, cf. e.g. Buecker et al., 2021). To conclude, the benefits of 
more complex but uninterpretable models over interpretable ones should be careful-
ly analysed during model selection.

An important challenge consists in the development of fair scoring models 
(Kusner and Loftus, 2020; Szepannek and Luebke, 2021) and future research on this 
topic will be based on causal inference (cf. e.g. Luebke et al., 2020 for some 
examples). According to the results of Zhao and Hastie (2019), partial dependence 
curves can be used for this purpose. This makes the suggested measure of 
explainability also an important concept on the road towards developing fair scores.
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